98%
921
2 minutes
20
Loss of anticancer natural killer (NK) cell function in patients with acute myeloid leukemia (AML) is associated with fatal disease progression and remains poorly understood. Here, we demonstrate that AML blasts isolated from patients rapidly inhibit NK cell function and escape NK cell-mediated killing. Transcriptome analysis of NK cells exposed to AML blasts revealed increased CREM expression and transcriptional activity, indicating enhanced cyclic adenosine monophosphate (cAMP) signaling, confirmed by uniform production of the cAMP-inducing prostanoid prostaglandin E2 (PGE2) by all AML-blast isolates from patients. Phosphoproteome analysis disclosed that PGE2 induced a blockade of lymphocyte-specific protein tyrosine kinase (LCK)-extracellular signal-regulated kinase signaling that is crucial for NK cell activation, indicating a 2-layered escape of AML blasts with low expression of NK cell-activating ligands and inhibition of NK cell signaling. To evaluate the therapeutic potential to target PGE2 inhibition, we combined Fcγ-receptor-mediated activation with the prevention of inhibitory PGE2 signaling. This rescued NK cell function and restored the killing of AML blasts. Thus, we identify the PGE2-LCK signaling axis as the key barrier for NK cell activation in 2-layered immune escape of AML blasts that can be targeted for immune therapy to reconstitute anticancer NK cell immunity in patients with AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood.2024025706 | DOI Listing |
Blood Adv
September 2025
AP-HP, Hôpital Saint Louis and University of Paris, INSERM U944 and THEMA insitute, Paris, France.
Germline DDX41 mutations (DDX41mut) are identified in approximately 5% of myeloid malignancies with excess of blasts, representing a distinct MDS/AML entity. The disease is associated with better outcomes compared to DDX41 wild-type (DDX41WT), but patients who do not undergo allogeneic hematopoietic stem cell transplantation (HSCT) may experience late relapse. Due to the recent identification of DDX41mut, data on post-HSCT outcomes remain limited.
View Article and Find Full Text PDFBackground: Nucleophosmin 1 (NPM1) mutations represent one of the most frequent genetic alterations in acute myeloid leukemia (AML). However, the prognostic significance of concurrent molecular abnormalities and clinical features in NPM1-mutated AML remains to be fully elucidated.
Methods: We retrospectively analyzed 73 adult AML patients with NPM1 mutations.
Background: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive form of peripheral T-cell lymphoma, accounting for 1 - 2% of non-Hodgkin lymphomas. Diagnosis is challenging, and there is no established standard first-line treatment. This case report highlights a rare progression from AITL to therapy-related acute myeloid leukemia (AML-pCT) following cytotoxic chemotherapy.
View Article and Find Full Text PDFBackground: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.
Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.
Results: The patient exhibited morphological features of acute leukemia in the bone marrow.
Cytometry B Clin Cytom
September 2025
Department of Hematopathology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, Ch
Two types of plasmacytoid dendritic cell (pDC) proliferation disease are acknowledged so far by the 5th edition of the World Health Organization Classification of Haematolymphoid Tumors: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) and mature pDC proliferation associated with myeloid neoplasms (MPDCP) in which pDC is part of the malignant clone. We aim to investigate pDC proliferation associated with non-myeloid acute leukemia (AL). A retrospective analysis of all cases admitted in our center with a diagnosis of non-myeloid AL from September 2020 to April 2023 was performed to select cases with pDCs greater than 2% of bone marrow by flow cytometry (FCM).
View Article and Find Full Text PDF