Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.

Results: Our findings revealed three distinct stages in the spatiotemporal changes of prokaryotic communities in PM: an initial phase dominated by Lactobacillus, a transitional phase, and a final state of equilibrium. Significant variations in α- and β-diversity were observed across different spatial and temporal PM samples. We identified 178 medium- and high-quality non-redundant metagenome-assembled genomes (MAGs), and constructed their phylogenetic tree, depicting their roles in the carbon, nitrogen, and sulfur cycles. The Wood-Ljungdahl pathway and reverse TCA cycle were identified as the main carbon fixation mechanisms, with both hydrogenotrophic and aceticlastic methanogens playing a major role in methane production, and methylotrophic pathway observed in older PM. Furthermore, we identified relationships between prokaryotes and 29 carboxyl metabolites, including medium- and long-chain fatty acids. Horizontal gene transfer (HGT) was widespread in PM, particularly among clostridia, Bacteroidota, Bacilli, and Euryarchaeota, and was shown to play critical roles in fermentation dynamics, carbon fixation, methane production, and nitrogen and sulfur metabolism.

Conclusion: Our study provides new insights into the evolution and function of spatiotemporal PM, as well as its interactions with carboxyl metabolites. Lactobacillus dominated in new PM, while methanogens and clostridia were predominant in older or deeper PM layers. The three distinct stages of prokaryotic community development in PM and HGT played critical roles in metabolic function of spatiotemporal PM. Furthermore, this study highlights the importance of α-diversity, β-diversity, methanogens, and Clostridium as useful indicators for assessing PM quality in the production of high-quality Baijiu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748504PMC
http://dx.doi.org/10.1186/s40793-025-00668-8DOI Listing

Publication Analysis

Top Keywords

metabolic function
12
function spatiotemporal
12
structure metabolic
8
pit mud
8
horizontal gene
8
gene transfer
8
three distinct
8
distinct stages
8
nitrogen sulfur
8
carbon fixation
8

Similar Publications

Splenic erythrophagocytosis is regulated by ALX/FPR2 signaling.

Haematologica

September 2025

Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky,.

Maintaining a healthy pool of circulating red blood cells (RBCs) is essential for adequate perfusion, as even minor changes in the population can impair oxygen delivery, resulting in serious health complications including tissue ischemia and organ dysfunction. This responsibility largely falls to specialized macrophages in the spleen, known as red pulp macrophages, which efficiently take up and recycle damaged RBCs. However, questions remain regarding how these macrophages are acutely activated to accommodate increased demand.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.

View Article and Find Full Text PDF

NAD Metabolism Regulates Proliferation of Macrophages in Atherosclerosis.

Arterioscler Thromb Vasc Biol

September 2025

Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).

Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).

Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.

View Article and Find Full Text PDF

The adverse effects of Western diets (WD), high in both fat and simple sugars, which contribute to obesity and related disorders, have been extensively studied in laboratory rodents, but not in non-laboratory animals, which limits the scope of conclusions. Unlike laboratory mice or rats, non-laboratory rodents that reduce body mass for winter do not become obese when fed a high-fat diet. However, it is not known whether these rodents are also resistant to the adverse effects of WD.

View Article and Find Full Text PDF

Optimization of Nitrogen Application and Root Biomass Modulates 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice.

Physiol Plant

September 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.

The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.

View Article and Find Full Text PDF