98%
921
2 minutes
20
A supramolecular system, consisting of a tetrapyrenylporphyrinic core surrounded by arene-ruthenium prisms, has been assembled and characterized by means of electrochemical and photophysical techniques. The photophysical study shows that quantitative energy transfer from the peripheral pyrenyl units towards the central porphyrin core is operative in the tetrapyrenylporphyrinic system. Interestingly, encapsulation of the pyrenyl units into the ruthenium cages affects the photophysics of the central porphyrin component, since its emission quantum yield is reduced in the supramolecular array. Femtosecond transient absorption analysis evidenced a complex interplay of deactivation pathways, including energy and electron transfer processes from the porphyrin to the metalla-prisms, associated with different conformations of the system allowed by the flexibility of the linkers. Moreover, the non-emissive arene-ruthenium cages present a peculiar excited-state dynamics, here disentangled for the first time by means of transient absorption investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt03154g | DOI Listing |
Nature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFNat Commun
September 2025
Research Center Future Energy Materials and Systems of the Research Alliance Ruhr, Bochum, Germany.
The theoretical maximum critical temperature (T) for conventional superconductors at ambient pressure remains a fundamental question in condensed matter physics. Through analysis of electron-phonon calculations for over 20,000 metals, we critically examine this question. We find that while hydride metals can exhibit maximum phonon frequencies of more than 5000 K, the crucial logarithmic average frequency rarely exceeds 1800 K.
View Article and Find Full Text PDFInorg Chem
September 2025
General Education Center, Qinghai Institute of Technology, Xining 810000, China.
Zirconium disilicide (ZrSi) ceramics have excellent physical and chemical properties and are employed in aerospace, energy, and chemical industries. Currently, the preparation and properties of ZrSi ceramics have been less studied. To comprehensively study the characteristics of ZrSi ceramics, in this study, dense bulk ZrSi ceramic samples are successfully prepared by the high-pressure-high-temperature (HPHT) sintering technique.
View Article and Find Full Text PDFJ Endod
September 2025
Dental Specialty Center, Brazilian Military Police, Minas Gerais, Brazil.
Introduction: To evaluate how stepwise enlargement in the mesial root canals of mandibular first molars affect shaping outcomes and irrigant dynamics.
Methods: The shaping ability and irrigant flow patterns in mesial canals of mandibular first molars enlarged with ProTaper Next instruments (25/.06v, 30/.
Pharmacol Res
September 2025
University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Vienna, Austria. Electronic address:
Hemorrhagic stroke occurs due to a rupture of a blood vessel in the brain. This leads to initial mechanical damage at the site of injury and secondary injuries including axonal degeneration (AxD). Since axons are critical for all brain functions, we systematically reviewed studies that focused on axonal degeneration in two major types of hemorrhagic stroke, intracerebral hemorrhage and subarachnoid hemorrhage, to understand how and to what extent AxD develops and to interrogate underlying mechanisms and potential therapeutic targets.
View Article and Find Full Text PDF