98%
921
2 minutes
20
The YhaJ transcription factor responds to dinitrophenol (DNT) and its metabolic products. The YhaJ-involving cells have been exploited for whole-cell biosensors of soil-buried landmines. Such biosensors would decrease the damage to personnel who approach landmine fields. By the structure determination of the DNA-binding domain (DBD) of YhaJ and the structure-guided mutagenesis, we found that the mutation increasing the DNA binding affinity decreases the signal leakage in the absence of an effector, resulting in a significant enhancement of the response ratio for the DNT metabolite detection. The decrease in signal leakage explains the LysR-type transcriptional regulators' (LTTRs') unique mechanism of signal absence repression by choosing between two different activation binding sites. We showed that the biosensor performance enhancement by the decrease in signal leakage could combine with the previous signal-enhancing mutations. The novel mechanism of performance enhancement of YhaJ shed light on bacterial transcription regulation and the optimization of biosensors that involve the large family of LTTRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739112 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1510655 | DOI Listing |
Cardiovasc Res
September 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO, USA.
Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.
Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.
Crit Rev Immunol
September 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.
View Article and Find Full Text PDFFront Neurol
August 2025
Department of Mini-invasive Spinal Surgery, The Third People's Hospital of Henan Province, Zhengzhou, Henan, China.
Background: This study aimed to develop and validate the first nomogram model for predicting postoperative complications in thoracic spinal stenosis (TSS) patients undergoing unilateral biportal endoscopy (UBE), integrating multidimensional risk factors to provide a quantitative basis for preoperative risk evaluation and individualized treatment planning.
Methods: Patients were divided into a retrospective training cohort ( = 375) and a prospective validation cohort ( = 100). Baseline clinical data [age, diabetes, preoperative Japanese Orthopaedic Association (JOA) score], radiographic parameters (Spinal cord/canal area (SC/ECA) ratio, intramedullary high signal, thoracic kyphosis (TK) angle), and surgical variables (intraoperative blood loss, number of lesion segments, dural adhesion, etc.
Talanta
September 2025
College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrument
Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
Microglial activation-induced neuroinflammation and impaired neuronal mitophagy are recognized as pivotal pathogeneses in Parkinson's disease (PD). However, the role of microglial mitophagy in microglial activation during PD development remains unclear, and therapeutic interventions targeting this interaction are lacking. Rhapontigenin (Rhap), a stilbenoid enriched in Vitis vinifera, exhibits dual anti-neuroinflammatory and mitophagy-enhancing properties, but its therapeutic potential and mechanisms in PD are unexplored.
View Article and Find Full Text PDF