A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing soybean germination and vigor under water stress: the efficacy of bio-priming with sodium carboxymethyl cellulose and gum arabic. | LitMetric

Enhancing soybean germination and vigor under water stress: the efficacy of bio-priming with sodium carboxymethyl cellulose and gum arabic.

Front Plant Sci

National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions. The results revealed significant differences among varieties and applied treatments on germination, vigor, and physiological traits. Under drought stress, seed priming with 10% CG significantly improved germination percentage, germination rate, shoot length, root length, and biomass compared to unprimed seeds. Notable reductions in malondialdehyde (MDA) content and enhanced antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), suggest that 10% CG priming mitigates oxidative damage through enhanced antioxidant defense mechanisms. Moreover, 10% CG seed priming improved germination and growth parameters under flooding stress, but the advantages were less significant. In addition, the priming treatment significantly reduced electrolyte conductivity (EC) across all varieties compared to unprimed seeds, indicating improved membrane stability. Overall, 10% CG seed priming was more effective under drought and flooding conditions, demonstrating a potential strategy for enhancing stress tolerance in soybean varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740240PMC
http://dx.doi.org/10.3389/fpls.2024.1475148DOI Listing

Publication Analysis

Top Keywords

seed priming
24
germination vigor
8
gum arabic
8
priming
8
tolerance soybean
8
germination growth
8
soybean varieties
8
drought flooding
8
flooding stress
8
improved germination
8

Similar Publications