Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The main characteristics of Parkinson's disease (PD) are the loss of dopaminergic (DA) neurons and abnormal aggregation of cytosolic proteins. However, the exact pathogenesis of PD remains unclear, with ferroptosis emerging as one of the key factors driven by iron accumulation and lipid peroxidation. Glial cells, including microglia, astrocytes, and oligodendrocytes, serve as supportive cells in the central nervous system (CNS), but their abnormal activation can lead to DA neuron death and ferroptosis. This paper explores the interactions between glial cells and DA neurons, reviews the changes in glial cells during the pathological process of PD, and reports on how glial cells regulate ferroptosis in PD through iron homeostasis and lipid peroxidation. This opens up a new pathway for basic research and therapeutic strategies in Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739109PMC
http://dx.doi.org/10.3389/fcell.2024.1510897DOI Listing

Publication Analysis

Top Keywords

glial cells
20
parkinson's disease
12
lipid peroxidation
8
glial
5
cells
5
cells improve
4
improve parkinson's
4
disease modulating
4
modulating neuronal
4
neuronal function
4

Similar Publications

Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.

Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.

View Article and Find Full Text PDF

Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.

View Article and Find Full Text PDF

The maintenance of extracellular fluid (ECF) osmolality and sodium concentration ([Na]) near optimal "set point" values sustains physiological functions and prevents pathological states such as hypo- and hypernatremia. The peptide hormones vasopressin (antidiuretic hormone) and oxytocin (a natriuretic hormone in rats) play key roles in this process. These hormones are synthesized by hypothalamic magnocellular neurosecretory cells (MNCs) that project to the neurohypophysis and are released into the systemic circulation in response to rises in ECF osmolality or [Na].

View Article and Find Full Text PDF

The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult male and female mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. (S1P receptor 1) and (sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF