Formulation development of highly stable collagenase-containing hydrogels for wound healing.

J Pharm Sci

Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Collagenases are enzymes that break down collagen and are used in wound healing and treating various disorders. Currently, collagenase is commercially available in only ointment and injectable forms and is sensitive to various environmental factors. In the present study, different hydrogel formulations of collagenase have been prepared at pH 6.5 using carboxymethylcellulose sodium and zinc acetate with and without humectants such as propylene glycol (PG) and glycerin (GL) in varying concentrations. The formulated gels were stored at room temperature (25±2°C, 60±5% RH) and refrigerator temperature (5±3°C) for six months to evaluate their physical and up to six years for chemical stability. The gels were subjected to various tests, including organoleptic studies, spreadability, moisture content, swelling index, swelling/de-swelling, syneresis, viscosity, gelation time, and weight variation. The purity and molecular weight of collagenase have been determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). At the same time, its activity during the storage period was evaluated by gelatin zymography. Casein zymography was also performed to detect any caseinase contamination in the formulations. The release of the enzyme from different gel formulations was assessed using the Franz diffusion apparatus and analyzed by gelatin zymography. The results showed some physical changes that were more prominent in gels stored at room temperature than those kept refrigerated. The difference in humectant concentration was also found to affect the stability of gels. PG was found to be a better humectant than GL, particularly in a concentration of 25%. The zymography results indicated that collagenase was stable in all formulations kept in the refrigerator. In contrast, its complete degradation was noted in the preparations stored at room temperature within a month. The data generated in this study will help the formulators to commercialize a relatively economical gel formulation of collagenase that is highly stable for up to six years at refrigerator temperature (5±3°C).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2025.01.009DOI Listing

Publication Analysis

Top Keywords

stored room
12
room temperature
12
highly stable
8
wound healing
8
gels stored
8
refrigerator temperature
8
temperature 5±3°c
8
stability gels
8
gelatin zymography
8
humectant concentration
8

Similar Publications

Quality changes in thermally-treated stingless bee honey during room temperature storage.

Food Sci Biotechnol

October 2025

Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Andalas, Padang, 25163 Indonesia.

This study examined quality changes in () stingless bee honey subjected to thermal treatment and stored at room temperature. Honey was heated at 55, 75, and 90 °C for 10 or 20 min and then stored at 30 °C for 40 days. Physicochemical parameters including moisture content, total soluble solids (TSS), pH, acidity, viscosity, hydroxymethylfurfural (HMF), color (L*, a*, b*), antioxidant activity, and total phenolic content were analyzed.

View Article and Find Full Text PDF

Commercial lithium-ion batteries using organic solvent-based liquid electrolytes (LEs) face safety issues, including risks of fire and explosion. As a safer alternative, solid-state electrolytes are being extensively explored to replace these organic solvent-based LEs. Among various solid electrolyte options, polymer electrolytes offer advantages such as flexibility and ease of processing.

View Article and Find Full Text PDF

Significantly enhanced breakdown strength and energy density performances of methyl methacrylate--glycidyl methacrylate nanocomposites filled with BNNs@PDA-Ag hybrid structures.

Nanoscale

September 2025

School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.

Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.

View Article and Find Full Text PDF

Evaluation of a nucleic acid preservation protocol for microbiome studies involving samples from the oral cavity.

J Microbiol Methods

September 2025

Dynamics of Respiratory Infections Group, Helmholtz Centre for Infection Research-HZI Braunschweig, Braunschweig, Germany; Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany.

Purpose: The accuracy of oral microbiome research depends significantly on specimen sampling protocols, as well as their storage and preservation. Traditional methods, such as freezing, may not only involve logistical hurdles but can also impact the quality of microbial data, leading to difficulties in the comparability between different studies. This study evaluates the effectiveness of the room temperature nucleic acid preservation protocol using DNA/RNA Shield buffer as compared to standard freezing in preserving oral microbial communities over the course of 7 days.

View Article and Find Full Text PDF

Background: Hair analysis is increasingly utilized in psychoneuroendocrine research to assess long-term hormonal activity. A critical practical question when using this method is how long hair samples can be stored without compromising data quality, yet this issue remains insufficiently researched. Here, we report data from a first systematic, well-controlled within-subject investigation into the impact of storage duration (over 12 months) on hair cortisol and other common hair analytes.

View Article and Find Full Text PDF