98%
921
2 minutes
20
Inulin, a health-promoting dietary fiber, is efficiently metabolized by Weissella paramesenteroides YT175, a beneficial bacterium. The strain demonstrated a diauxic growth pattern within 48 h, reaching an optical density at 600 nm (OD) of approximately 1.5, accompanied by a significant decrease in pH to around 4.90. Thin-layer chromatography (TLC) analysis reveals an initial preference for inulin oligomers with lower degrees of polymerization (DP). Genomic sequence analysis identified a gene cluster, the pts1BCA operon, associated with inulin metabolism, which includes genes encoding sugar transport proteins, a beta-fructofuranosidase enzyme belonging to the glycoside hydrolase family 32 (GH32), and a transcriptional regulator. Comparative transcriptomic analysis revealed significant upregulation of genes encoding beta-fructofuranosidase, phosphotransferase system (PTS), major facilitator superfamily (MFS), and ATP-binding cassette (ABC) transporters, with qRT-PCR results validating the RNA-Seq data, underscoring their involvement in inulin metabolism. These findings propose a metabolic pathway for the strategic utilization of inulin by YT175, highlighting the synergistic role of its three types of membrane transport proteins in the consumption of inulin oligomers with diverse DPs and its diauxic growth behavior. These insights enhance our understanding of the interaction between probiotics and dietary fibers and pave the way for the development of novel synbiotic foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.139928 | DOI Listing |
Appl Environ Microbiol
September 2025
Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.
Efforts toward microbial conversion of lignin to value-added products face many challenges because lignin's methoxylated aromatic monomers release toxic C byproducts such as formaldehyde. The ability to grow on methoxylated aromatic acids (e.g.
View Article and Find Full Text PDFBioprocess Biosyst Eng
August 2025
Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad ICESI, Cali, Colombia.
Saccharomyces cerevisiae is indispensable to industrial fermentation; however, many existing models fail to adequately represent the metabolic complexity of its growth on mixed carbon sources in defined media. In this study, we introduce a novel hybrid modeling framework for the batch cultivation of S. cerevisiae, utilizing sucrose, glucose, and fructose as carbon sources, and urea as a nitrogen source.
View Article and Find Full Text PDFNat Commun
July 2025
Computational Biology Research Centre, Human Technopole, Milan, Italy.
Challenges such as antibiotic resistance, ecosystem resilience, and bioproduction optimization require quantitative methods to characterize microbial responses to environmental perturbations. However, translating rapidly growing microbial growth datasets into actionable insights remains challenging. To address this issue, we introduce Kinbiont-an open-source tool that integrates dynamic models with machine learning methods for data-driven discovery in microbiology.
View Article and Find Full Text PDFYeast
June 2025
Department of Life Sciences, Chalmers University of Technology, Göteborg, Västra Götaland, Sweden.
Tda1p is a protein kinase in Saccharomyces cerevisiae. Here we investigate the function of TDA1 during the diauxic shift using transcriptomics. We compared the gene expression in the deletion mutant tda1∆ and the reference strain (BY4741) during both the aerobic fermentation phase (log phase), and the respiratory phase (post-diauxic shift phase, PDS) in three separate independent experiments.
View Article and Find Full Text PDFWater Environ Res
June 2025
School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
In the present work, an arsenic (As) resistant bacterium has been isolated from the Ganga River, Varanasi, Uttar Pradesh, India. The isolate was identified as Acinetobacter junii MKVVM4 IITBHU (NCBI accession no. ON248394).
View Article and Find Full Text PDF