98%
921
2 minutes
20
MicroRNAs are a part of the integral regulatory mechanisms found in eukaryotic cells that help in maintaining cellular homeostasis by modulating the expression of target genes. However, during stress conditions like viral infection, the expression profile of the microRNAs change, thereby directly modulating the expression of viral genes and/or indirectly targeting the virus by regulating the host genes. The present study intends to identify previously uncharacterized cellular microRNAs, which are significantly modulated upon HIV-1 infection. With the available microarray data of five independent studies in the NCBI GEO database, 10 common yet functionally uncharacterized microRNAs that are deregulated during HIV-1 infection in humans were identified. Their expression profiles were validated in HIV-1 infected human peripheral blood mononuclear cells and a CD4T cell line. Among them, miR-197-3p showed significant upregulation during HIV-1 infection in all the cell types tested and was selected for further characterization. We then found that miR-197-3p increases progeny virion infectivity through restricting the expression of DDX52. Interestingly, DDX52 showed a negative impact on virion infectivity by downregulating the HIV-1 viral infectivity factor (Vif) at the protein level. Mechanistically, our study also revealed that Vif, DDX52, and APOBEC3G form a complex, which might be responsible for Vif downregulation by proteasomal degradation. Taken together, our results demonstrate that miR-197-3p is a positive regulator of HIV-1 infectivity as it enhances the progeny virion infectivity by targeting DDX52, which is a negative regulator of Vif.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867528 | PMC |
http://dx.doi.org/10.1016/j.jbc.2025.108198 | DOI Listing |
Virology
August 2025
Changchun Institute of Biological Products Co.,Ltd, Changchun, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, China. Electronic address:
Avian influenza virus infections pose a potential pandemic threat. The currently licensed vaccines have inherent limitations, emphasizing the urgent need for improved influenza vaccines. Here, we developed a novel hemagglutinin (HA) virus-like particle (VLP) vaccine candidate through the baculovirus expression vector system (BEVS).
View Article and Find Full Text PDFVirology
September 2025
Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, 12566, Egypt. Electronic address:
Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) has recently become a serious cause for global concern because of non-susceptibility to multiple antimicrobial classes, its prevalence in nosocomial infections, and the lack of effective treatments against such a pathogen.
Methods: This study isolated two lytic phages from hospital sewage, purified, propagated, characterized morphologically by transmission electron microscopy, and genomically by Oxford Nanopore Sequencing. The phage lysates were then formulated individually as carboxymethylcellulose (CMC) 5 % w/v hydrogels.
HIV-1 particle assembly depends critically on multiple proteolytic cleavages of viral polyproteins by the viral protease, PR. PR is translated as part of the Gag-Pro-Pol polyprotein, which undergoes autoproteolysis to liberate active, dimeric PR during virus particle maturation. Gag-Pro-Pol is produced via an infrequent -1 frameshifting event in ribosomes translating full length genomic RNA as Gag mRNA.
View Article and Find Full Text PDFViruses assemble from component parts inside their host cells, but the mechanisms coordinating this complex process are not completely understood. In tailed bacteriophages, the genome is packaged into its capsid shell through the portal complex. The portal complex then closes to retain DNA and connects to the tail, which is required for host recognition and infection.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2025
Imperial College London, London SW7 2AZ, UK.
pathogenicity islands (SaPIs) are prototypical members of the phage-inducible chromosomal islands (PICI) family. These elements redirect helper phage capsid assembly to produce smaller capsids, accommodating the satellite genome while excluding the phage genome. This study identifies how SaPIpT1028 mediates capsid redirection through a unique gene, (redirecting capsid morphogenesis).
View Article and Find Full Text PDF