Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The existing research studies on the basin stability of stochastic systems typically focus on smooth systems, or the attraction basins are pre-defined as easily solvable regular basins. In this work, we introduce a new framework to discover the basin stability from state time series in the non-smooth stochastic competition system under threshold control. Specifically, we approximate the drift and diffusion with threshold control parameters by an extended Kramers-Moyal expansion with initial state partitioning. Then, we calculate the first transition probability of irregular attraction basins by applying a difference scheme and smooth approximation methods for the system. Numerical simulations of the original system validate the accuracy of the identified drift and diffusion terms, as well as the smooth approximation. Our findings reveal that threshold control modifies the influence of environmental noise on the system basin stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0238372 | DOI Listing |