98%
921
2 minutes
20
Microorganisms, crucial for environmental equilibrium, could be destructive, resulting in detrimental pathophysiology to the human host. Moreover, with the emergence of antibiotic resistance (ABR), the microbial communities pose the century's largest public health challenges in terms of effective treatment strategies. Furthermore, given the large diversity and number of known bacterial strains, describing treatment choices for infected patients using experimental methodologies is time-consuming. An alternative technique, gaining popularity as sequencing prices fall and technology advances, is to use bacterial genotype rather than phenotype to determine ABR. Complementing machine learning into clinical practice provides a data-driven platform for categorization and interpretation of bacterial datasets. In the present study, k-mers were generated from nucleotide sequences of pathogenic bacteria resistant to antibiotics. Subsequently, they were clustered into groups of bacteria sharing similar genomic features using the Affinity propagation algorithm with a Silhouette coefficient of 0.82. Thereafter, a prediction model based on Random Forest algorithm was developed to explore the prediction capability of the k-mers. It yielded an overall specificity of 0.99 and a sensitivity of 0.98. Additionally, the genes and ABR drivers related to the k-mers were identified to explore their biological relevance. Furthermore, a multilayer perceptron model with a hamming loss of 0.05 was built to classify the bacterial strains into resistant and non-resistant strains against various antibiotics. Segregating pathogenic bacteria based on genomic similarities could be a valuable approach for assessing the severity of diseases caused by new bacterial strains. Utilization of this strategy could aid in enhancing our understanding of ABR patterns, paving the way for more informed and effective treatment options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732175 | PMC |
http://dx.doi.org/10.3389/frabi.2024.1405296 | DOI Listing |
Int J Syst Evol Microbiol
September 2025
Department of Systems Biology, Harvard Medical School, Boston, USA.
The nitrogen-fixing, chemolithoautotrophic genus is found across numerous diverse environments worldwide and is an important member of many ecosystems. These species serve as model systems for their metabolic properties and have industrial applications in bioremediation and sustainable protein, food and fertilizer production. Despite their abundance and utility, the majority of strains are without a genome sequence, and only eight validly published species are known to date.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biosciences, Integral University, Kursi Road, Lucknow, 226026, India.
Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.
Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.
Biotechnol Lett
September 2025
Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.
Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.
A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.
View Article and Find Full Text PDF