Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Free-space optical (FSO) communication has the advantages of large bandwidth and high security and being license-free, making it the preferred solution for addressing the "last kilometer" of information transmission. However, it is susceptible to fluctuations in the received optical power (ROP) due to atmospheric turbulence and pointing errors, resulting in the inevitable free-space optical communication transmission performance degradation. In this work, we experimentally verified the turbulence resistance of the cylindrical vector beam (CVB) over a 3 km long free-space field trial link. A transmission capacity of 640 Gbit/s was conducted by utilizing a 20 GBaud 16-quadrature amplitude modulation (16QAM) through eight-wavelength multiplexing. The experimental results show that the CVB exhibits stronger turbulence resilience compared to the scalar circularly polarized Gaussian beam. Under moderately strong turbulence conditions, the communication stability probability of the first-order CVB improves by about 1/3 compared to the Gaussian beam, while for that of the second-order, the CVB is improved by about 1/5.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.535252DOI Listing

Publication Analysis

Top Keywords

field trial
8
cylindrical vector
8
vector beam
8
free-space optical
8
gaussian beam
8
640 gbit/s fso
4
fso turbulence-resilient
4
turbulence-resilient field
4
trial utilizing
4
utilizing cylindrical
4

Similar Publications

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF

Immunotherapies for Aging and Age-Related Diseases: Advances, Pitfalls, and Prospects.

Research (Wash D C)

September 2025

NHC Key Laboratory of Tropical Disease Control, School of Life Sciences and Medical Technology, Hainan Medical University, Haikou, Hainan 571199, China.

Aging is characterized by a gradual decline in the functionality of all the organs and tissues, leading to various diseases. As the global population ages, the urgency to develop effective anti-aging strategies becomes increasingly critical due to the growing severity of associated health problems. Immunotherapy offers novel and promising approaches to combat aging by utilizing approaches including vaccines, antibodies, and cytokines to target specific aging-related molecules and pathways.

View Article and Find Full Text PDF

Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are common respiratory conditions that significantly impact patient health and contribute to substantial healthcare burdens. While conventional treatments offer symptom relief, many patients continue to experience persistent symptoms, side effects, or resistance to standard therapies. This highlights the growing need for novel, non-invasive, and sustainable therapeutic strategies to manage chronic airway inflammation.

View Article and Find Full Text PDF

Intravascular optical coherence tomography (OCT) has represented a revolutionary invasive imaging method, offering high-resolution cross-sectional views of human coronary arteries, thereby promoting a significant evolution in the understanding of vascular biology in both acute and chronic coronary pathologies. Since the development of OCT in the early 1990s, this technique has provided detailed insights into vascular biology, enabling a more thorough assessment of coronary artery disease (CAD) and the impact of percutaneous coronary intervention (PCI). Moreover, a series of recent clinical trials has consistently demonstrated the clinical benefits of intravascular imaging (IVI) and OCT-guided PCI, showing improved outcomes compared to angiography-guided procedures, particularly in cases of complex coronary pathology.

View Article and Find Full Text PDF

Dissolved oxygen (DO) dramatically impacts the habitat use of many aquatic animals, particularly for air-breathing animals that rely on 'physical gills' for respiration while submerged. Invertebrates that use bubbles as physical gills directly uptake DO from the water for respiration. However, no vertebrate animals have yet been documented using physical gills.

View Article and Find Full Text PDF