Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Patients undergoing liver transplantation (LT) are at risk of perioperative neurocognitive dysfunction (PND), which significantly affects the patients' prognosis.

Objective: This study used machine learning (ML) algorithms with an aim to extract critical predictors and develop an ML model to predict PND among LT recipients.

Methods: In this retrospective study, data from 958 patients who underwent LT between January 2015 and January 2020 were extracted from the Third Affiliated Hospital of Sun Yat-sen University. Six ML algorithms were used to predict post-LT PND, and model performance was evaluated using area under the receiver operating curve (AUC), accuracy, sensitivity, specificity, and F-scores. The best-performing model was additionally validated using a temporal external dataset including 309 LT cases from February 2020 to August 2022, and an independent external dataset extracted from the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ) database including 325 patients.

Results: In the development cohort, 201 out of 751 (33.5%) patients were diagnosed with PND. The logistic regression model achieved the highest AUC (0.799) in the internal validation set, with comparable AUC in the temporal external (0.826) and MIMIC-Ⅳ validation sets (0.72). The top 3 features contributing to post-LT PND diagnosis were the preoperative overt hepatic encephalopathy, platelet level, and postoperative sequential organ failure assessment score, as revealed by the Shapley additive explanations method.

Conclusions: A real-time logistic regression model-based online predictor of post-LT PND was developed, providing a highly interoperable tool for use across medical institutions to support early risk stratification and decision making for the LT recipients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780294PMC
http://dx.doi.org/10.2196/55046DOI Listing

Publication Analysis

Top Keywords

post-lt pnd
12
machine learning
8
perioperative neurocognitive
8
medical mart
8
mart intensive
8
intensive care
8
retrospective study
8
temporal external
8
external dataset
8
logistic regression
8

Similar Publications

Background: Patients undergoing liver transplantation (LT) are at risk of perioperative neurocognitive dysfunction (PND), which significantly affects the patients' prognosis.

Objective: This study used machine learning (ML) algorithms with an aim to extract critical predictors and develop an ML model to predict PND among LT recipients.

Methods: In this retrospective study, data from 958 patients who underwent LT between January 2015 and January 2020 were extracted from the Third Affiliated Hospital of Sun Yat-sen University.

View Article and Find Full Text PDF