Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity. Here we propose an innovative logic gate using a single light source, with frequency and polarization serving as two virtual inputs. Our design leverages frequency-polarization multiplexed metasurfaces to achieve all basic logic operations by selectively routing surface plasmon polaritons. This single-channel logic gate maintains inherent coherence between frequency and polarization, thereby considerably eliminating stringent light-source specifications and numerous rigid phase controls and resulting in higher stability. Our device showcases unique application potentials in on-chip readout of encryption information by using random sequences as a one-time pad, unlocking fresh prospects for information protection and optical computing with other simple light sources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c04954DOI Listing

Publication Analysis

Top Keywords

optical computing
8
light sources
8
logic gate
8
frequency polarization
8
all-optical single-channel
4
single-channel plasmonic
4
logic
4
plasmonic logic
4
logic gates
4
gates optical
4

Similar Publications

Soliton propagation of laser radiation in various nonlinear media is of great importance because of its numerous applications. Active periodic structures with parity-time symmetry provide the possibility for the solitons generation due to the balance of energy gain and loss. In the present paper, we derive an approximate analytical soliton solution to a model of two-color laser radiation propagation in an active periodic structure.

View Article and Find Full Text PDF

Improved rotational characterization of the E3Σ1+(63S1) Rydberg state of CdAr van der Waals diatom: Excitation of single-isotopologue and J-level population distribution.

J Chem Phys

September 2025

Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.

An improved rotational characterization of the E3Σ1+(63S1) Rydberg state of the CdAr diatom produced in a supersonic beam and studied using laser induced fluorescence (LIF) excitation spectra is presented. As an example, the spectra of the E3Σ1+←A3Π0+(53P1) transition, originating from the excitation of a single 116Cd40Ar isotopologue, are recorded and analyzed. In the experiment, the optical-optical double resonance method is employed, utilizing the E3Σ1+(υ')←A3Π0+(53P1)(υ″=6)←X1Σ0+(υ=0) scheme.

View Article and Find Full Text PDF

We introduce an efficient method, TTN-HEOM, for exactly calculating the open quantum dynamics for driven quantum systems interacting with highly structured bosonic baths by combining the tree tensor network (TTN) decomposition scheme with the bexcitonic generalization of the numerically exact hierarchical equations of motion (HEOM). The method yields a series of quantum master equations for all core tensors in the TTN that efficiently and accurately capture the open quantum dynamics for non-Markovian environments to all orders in the system-bath interaction. These master equations are constructed based on the time-dependent Dirac-Frenkel variational principle, which isolates the optimal dynamics for the core tensors given the TTN ansatz.

View Article and Find Full Text PDF

Purpose: Recent work has shown potential benefits for perimetry with dense spacing. To investigate the impact of normal inhomogeneity of perimetric sensitivity on perimetry with dense spacing, suprathreshold perimetry was used near the optic disc where shadows of blood vessels affect sensitivity in healthy eyes.

Methods: Three groups of participants were tested: 58 healthy older controls, 29 healthy younger controls and 18 patients with glaucoma.

View Article and Find Full Text PDF

Bacterial meningitis and infectious cavernous sinus thrombosis (CST) are both life-threatening central nervous system infections, often caused by sinusitis. While cerebrovascular complications are well-recognized in bacterial meningitis, their association with CST is rare. A 69-year-old man presented with a 19-day history of headache, followed by diplopia.

View Article and Find Full Text PDF