Soil nutrient limitation controls trophic cascade effects of micro-food web-derived ecological functions in degraded agroecosystems.

J Adv Res

College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Soil nutrient supply drives the ecological functions of soil micro-food webs through bottom-up and top-down mechanisms in degraded agroecosystems. Nutrient limitation responds sensitively to variations in degraded agroecosystems through restoration practices, such as legume intercropping.

Objectives: This study examined the effects of legume intercropping on trophic cascade dynamics through resource supply in degraded purple soil ecosystems.

Methods: A field experiment was conducted with three plantation types: Camellia oleifera monoculture (CK), C. oleifera-Arachis hypogaea (peanut) intercropping (CP), and C. oleifera-Senna tora intercropping (CS). Using soil nutrient limitation as a premise, modified by legume intercropping, we assessed the biodiversity of soil biotic taxa, analysed their community composition, and applied partial least squares path modelling (PLS-PM) to link trophic cascade with ecological functions.

Results: Legume intercropping altered the abundance of biotic taxa, leading to changes in biotic diversity and microbial life strategies. The PLS-PM results indicated that legume intercropping enhanced bacterial diversity by aggravating soil P limitation, which subsequently increased protist consumer diversity and omnivore-predator nematode abundance through a bottom-up effect. Omnivore-predator nematodes and protist consumers indirectly influenced soil P metabolism, down-regulated through bacteria in the top-down effect. We observed high consistency between the untargeted metabolomic analysis and soil nutrient limitations. These findings indicate that soil micro-food web structure and function responded sensitively to legume intercropping in degraded ecosystems.

Conclusion: The results highlight the role of soil nutrient limitation in shaping micro-food webs and suggest that soil P limitation controls the down-regulation of soil P-related ecological functions through bottom-up and top-down effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2025.01.018DOI Listing

Publication Analysis

Top Keywords

soil nutrient
20
legume intercropping
20
nutrient limitation
16
soil
13
trophic cascade
12
ecological functions
12
degraded agroecosystems
12
limitation controls
8
soil micro-food
8
micro-food webs
8

Similar Publications

The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.

View Article and Find Full Text PDF

Beneficial soil microbes as drivers of plant-insect interactions: A Perspective.

Curr Opin Insect Sci

September 2025

Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. Electronic address:

The association of plants with beneficial soil microbes, including arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR), can enhance plant growth and nutrient uptake while modifying plant traits including growth rate, architecture, nutritional quality, secondary metabolites, phytohormones and volatile organic compounds (VOCs), necessary for interactions with insect pests and their natural enemies. Microbe-induced effects on insect herbivores and their natural enemies can be positive, neutral, or negative and are context dependent, creating the need for continued synthesis of published research to identify emerging patterns, recognize limitations, and guide future research. This perspective highlights three key pathways through which beneficial soil microbes drive interactions among agricultural plants, insect pests, and their natural enemies through the lens of applied research: (1) alterations in plant growth rate, architecture, and nutritional quality; (2) modifications of plant secondary metabolites and phytohormones; and (3) modifications in the emissions of volatile organic compounds.

View Article and Find Full Text PDF

Effects of bamboo nano-biochar on sandy loam nitrogen and phosphorus leaching loss and water infiltration capacity.

Sci Total Environ

September 2025

School of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China.

Biochar has emerged as a promising soil amendment for improving soil quality and mitigating environmental impacts, such as nutrient leaching. This study evaluated the impacts of ball-milled bamboo nano-biochar on water infiltration dynamics, retention capacity, and nitrogen‑phosphorus leaching in sandy loam soil using controlled column experiments and leaching experiments with five application doses alongside bulk biochar and untreated controls. Experimental results demonstrated that nano-biochar application significantly enhanced soil water retention capacity compared to the raw soil.

View Article and Find Full Text PDF

Plants being rooted entities, are highly susceptible to diverse abiotic stresses that impair their growth and development. To encounter these adverse conditions, plants have developed several morpho-physiological and biochemical strategies. In particular, nutrients such as nitrogen, phosphorous, potassium, sulfur and iron-play an important role in enhancing stress resilience by promoting growth and regulating key signaling pathways.

View Article and Find Full Text PDF

The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.

View Article and Find Full Text PDF