Mg-dependent mechanism of environmental versatility in a multidrug efflux pump.

Structure

Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli. In the absence of Mg, AcrA becomes increasingly plastic within acidic conditions, but when Mg is bound this is ameliorated, resulting instead in domain specific organization. We establish a unique histidine residue directs these dynamics and is essential for sustaining pump activity across acidic, neutral, and basic regimes. Overall, we propose Mg conserves AcrA structural mobility to ensure optimal AcrAB-TolC function within rapidly changing environments commonly faced during bacterial infection and colonization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2024.12.012DOI Listing

Publication Analysis

Top Keywords

multidrug efflux
8
mg-dependent mechanism
4
mechanism environmental
4
environmental versatility
4
multidrug
4
versatility multidrug
4
efflux pump
4
pump tripartite
4
tripartite resistance
4
resistance nodulation
4

Similar Publications

Reprogramming resistance: phage-antibiotic synergy targets efflux systems in ESKAPEE pathogens.

mBio

September 2025

Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) ESKAPE pathogens pose a significant global health threat due to their ability to evade antibiotics through intrinsic and acquired mechanisms. These bacteria, including , , , , , and species, evade antibiotics through intrinsic and adaptive mechanisms. Common strategies include capsule formation, biofilm, β-lactamase production, and efflux activity.

View Article and Find Full Text PDF

The overexpression of P-glycoprotein (P-gp) has been recognized as a pivotal factor contributing to the emergence of multidrug resistance (MDR), a phenomenon that frequently limits the efficacy of chemotherapy and profoundly impacts patient prognosis. Consequently, the inhibition of P-gp's efflux function has become a critical therapeutic strategy for overcoming drug resistance and enhancing chemotherapeutic efficacy. In recent years, the development of P-gp inhibitors has garnered significant attention, particularly with the frequent incorporation of heterocyclic derivatives, which exhibit exceptional biological activity and favorable chemical properties, into drug design.

View Article and Find Full Text PDF

Abstract: The rise of multidrug-resistant poses significant challenges in hospital settings. This study evaluates the antimicrobial potential of the aqueous extract of (AETC) against strain AB0014, isolated from a preterm neonate presenting sepsis. The minimum inhibitory concentration (MIC) was determined using the microdilution method.

View Article and Find Full Text PDF

Tigliane glycosides from Euphorbia tirucalli as multidrug resistance modulators.

Bioorg Chem

September 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. Electronic address:

Chemical investigation of the twigs and leaves of Euphorbia tirucalli afforded six undescribed tigliane glycosides, tirucalosides A-F (1-6), together with 12 known diterpenoids (7-18). Compound 1 represents a rare carbon skeleton bearing a 5/7/5/4-fused ring system, while compound 6 contains an unusual seco-glucoside substitution. Their structures were determined by a combination of an extensive spectroscopic analysis and acid hydrolysis experiment.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives as AcrB inhibitors with potent antibiofilm effect for reversing bacterial multidrug resistance.

Bioorg Chem

September 2025

Department of Medicinal Chemistry, Shandong Key Laboratory of Druggability Optimization and Evaluation for Lead Compounds, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China. Electronic address:

A series of novel 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives were rationally designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their antibiotic potentiating effects, followed by evaluation of Nile Red efflux inhibition, and off-target effects including activity on the outer and inner bacterial membranes. Ten compounds potentiated antibiotic activity at sub-inhibitory concentrations, reducing the minimum inhibitory concentrations (MICs) of at least one of the tested antibiotics by at least 8-fold, with three derivatives (7c, 11g, and 11i) achieving 32-fold MIC reductions at 128 μg/mL.

View Article and Find Full Text PDF