98%
921
2 minutes
20
Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD. Tyrosine hydroxylase (TH) and brain derived neurotrophic factor (BDNF) were evaluated in substantia nigra (SN) region of the brain by immunohistochemical staining. Compared with the control group, the relative expression level of LncRNA NEAT1 in the MPTP group was significantly increased. LncRNA NEAT1 is negatively correlated with miR-376b-3p. LncRNA NEAT1 significantly increased oxidative stress, neuroinflammation along with enhanced neurotrophic potential via NLR family Pyrin domain protein 3 (NLRP3) pathway. In conclusion, these results indicated that LncRNA NEAT1 participated in the pathophysiological of PD and its mechanism via the miR-376b-3p/NLRP3 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11481-024-10168-0 | DOI Listing |
J Periodontal Res
September 2025
Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile.
This study identifies a transcriptomic profile of long noncoding RNAs in gingival crevicular fluid samples in pregnant women with gestational diabetes risk. NEAT1 and LINC-PINT were increased expression in gingival crevicular fluid samples in pregnancies later diagnosed with gestational diabetes mellitus.
View Article and Find Full Text PDFFEBS Lett
September 2025
Department of Translational Medicine, University of Ferrara, Italy.
This study, based on datasets from healthy tissues, lactating mammary epithelial cells, and breast cancer phenotypes, investigates mammary gland pathophysiology at single-cell resolution to identify key regulators in breast cancer development and to gain a deeper understanding of its biology and heterogeneity. We suggest that antileukoproteinase (SLPI) has prognostic value associated with metastasis in basal breast cancers. Our analysis highlights the similarity between triple-negative breast cancer cells and mature luminal lactocytes, which share active regulons (SOX2, MTHFD1, POU4F3, and ZNF32), suggesting conserved molecular mechanisms.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Biochemistry and Molecular Biology, Bengbu Medical University, Bengbu 233030, China.
Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.
Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.
Genome Biol
September 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
Cellular senescence is accompanied by extensive genomic reorganization, such as senescence-associated heterochromatin foci and expanded interchromatin compartments, to ultimately affect gene expression. Here, we demonstrate that chromatin structural changes in senescent cells drive significant alterations in the phase behavior and motility of paraspeckles, a type of interchromatin compartment condensate. We observe increased numbers, size, and elongation of paraspeckles harboring NONO and NEAT1_2, driven by elevated levels of those components, consistent with the micellization model of longitudinal growth rather than condensate coalescence.
View Article and Find Full Text PDFBr J Haematol
September 2025
Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece.
Childhood acute lymphoblastic leukaemia (chALL) remains the most prevalent malignancy in children and adolescents. Improving risk stratification and providing personalized prognosis and treatment remain major clinical challenges. Herein, we analysed the clinical utility of NEAT1 lncRNA for the prognosis and prediction of treatment outcome of childhood B-cell precursor ALL (chB-ALL).
View Article and Find Full Text PDF