Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology. We have developed a novel multivalent cholesterol-modified paranemic crossover DNA (PX-DNA-chol) construct, which is a four-stranded DNA structure containing adjacent double helices intertwined with their local helix axes parallel and serves as an effective synthetic nano-glue. This construct promotes the rapid coalescence of nanoscale EVs into clusters of micrometer scale, thereby streamlining their enrichment. Utilizing a conventional low-speed centrifuge, this intriguing methodology achieves a rapid concentration of EVs within minutes, bypassing the laborious and high-speed centrifugation steps typically required. The quality of EVs isolated by our technique is comparable to that obtained through ultracentrifugation methods. Given these advancements, our PX-DNA-chol-facilitated EVs enrichment protocol is poised to advance the field of EVs research, providing a robust and accessible tool for in-depth studies of EVs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c03842DOI Listing

Publication Analysis

Top Keywords

evs
10
extracellular vesicles
8
synthetic nano-glue
8
efficient rapid
4
enrichment
4
rapid enrichment
4
enrichment extracellular
4
dna
4
vesicles dna
4
dna nanotechnology-enabled
4

Similar Publications

Proteomics Uncovers Enrichment Bias of Common Extracellular Vesicle Isolation Methods in HEK293T Cells.

J Proteome Res

September 2025

School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.

Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.

View Article and Find Full Text PDF

Schistosome parasites are known to modulate host immune responses, which is achieved in part through the release of excretory/secretory (ES) products, including extracellular vesicles (EVs). During chronic schistosomiasis, increased regulatory responses are found, which include enhanced IL-10 production by B (Breg) cells. ES products from schistosome eggs are able to induce IL-10 production by B cells.

View Article and Find Full Text PDF

In the field of lung transplantation (LTx), the survival of lung transplant recipients (LTRs) is limited by events such as primary graft dysfunction (PGD), infections, and acute rejection (AR), which promote the development of chronic lung allograft dysfunction (CLAD). Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as key players in LTx because of their roles in immune regulation, inflammation, and antigen presentation. EVs carry immunologically active molecules such as MHC class I/II proteins, cytokines, and lung self-antigens (SAgs), suggesting their involvement in infections and both AR and CLAD.

View Article and Find Full Text PDF

Microglia-Astroglia-Neuron network following stroke: novel insight into extracellular vesicles communication.

Brain Res Bull

September 2025

Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China. Electronic address:

Stroke is one of the leading causes of death and disability worldwide, with ischemic stroke accounting for the majority of cases. Intercellular communication is critical to its prognostic impact, and extracellular vesicles (EVs) are an emerging important mechanism. EVs are increasingly recognized as key mediators of crosstalk between neurons and glial cells, affecting processes such as neuroinflammation, oxidative stress and tissue repair.

View Article and Find Full Text PDF

Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species.

View Article and Find Full Text PDF