98%
921
2 minutes
20
Monolayer atomic thin films of group-V elements have a high potential for application in spintronics and valleytronics because of their unique crystal structure and strong spin-orbit coupling. We fabricated Sb and Bi monolayers on a SiC(0001) substrate by the molecular-beam-epitaxy method and studied the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The fabricated Sb film shows the (√3×√3)R30º superstructure associated with the formation of ⍺-Sb, and exhibits a semiconducting nature with a band gap of more than 1.8 eV. Spin-resolved ARPES measurements of isostructural ⍺-Bi revealed the in-plane spin polarization for the topmost valence band, demonstrating its Rashbasplittingof nature due to the space-inversion-symmetry breaking. We discuss the originobserved characteristic band structure and its similarity and difference between Sband Bi. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ada9b0 | DOI Listing |
Nano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFChem Sci
August 2025
College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University Jiujiang 332005 China
BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China.
The photophysical properties of two new Bodipy dimers are investigated using a variety of techniques, including steady-state UV-vis absorption and fluorescence spectroscopy, femtosecond and nanosecond transient absorption spectroscopy, and pulse laser-excited time-resolved electron paramagnetic resonance (TREPR) spectroscopic methods. The dimers are formed by the Bodipy units rigidly linked by the orthogonal phenylene bridge. One of the dimers is composed of iodinated units, and the other is not.
View Article and Find Full Text PDFSmall
September 2025
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China.
The precise modulation of the lifetime and the responsive properties of room-temperature phosphorescence (RTP) is essential for realizing its multifunctional applications. Herein, a facile strategy is presented to achieve a series of cellulose benzoate esters (CBE-X, X = H/CH/OH/NH) with lifetime-tunable RTP through substituent engineering. Enhancing the electron-donating ability of CBE-X effectively modulates the HOMO-LUMO gap, exciton energy, spin-orbit coupling, and interaction between cellulose chains, thereby enabling control over the RTP lifetime.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan.
Monolayer Janus transition-metal dichalcogenides possess Ising- and Rashba-type spin-orbit-couplings (SOC), leading to intriguing spin splitting effects at K and K', and around Γ points across the wide energy range. Using first-principles calculations, we unveil these SOC characteristics in metallic Janus NbSSe and demonstrate its potential for optically controlled spin current generation. On the basis of the symmetry of the system, we show that different linear polarized light can selectively drive spin currents of distinct spin components.
View Article and Find Full Text PDF