Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation. Hydroxyurea, which blocks DNA replication and generates DSBs, induced expression. The mutants were hypersensitive to hydroxyurea, with decreased DSB repair by HR. Metabolomic analysis of the strong mutant revealed depletion of metabolites associated with DNA damage responses. In contrast to SAMHD1, VEN4 showed no evident involvement in preventing R-loop accumulation. Our study thus reveals functional conservation in DNA repair by VEN4 and SAMHD1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720913PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e41019DOI Listing

Publication Analysis

Top Keywords

dna repair
12
functional conservation
8
dna
8
dsb repair
8
dna damage
8
samhd1
5
repair
5
conservation divergence
4
divergence arabidopsis
4
arabidopsis venosa4
4

Similar Publications

Noncompetitive Inhibition of DNA Polymerase β by a Nonnative Nucleotide.

J Org Chem

September 2025

Johns Hopkins University, Department of Chemistry, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

Base excision repair (BER) is a DNA repair pathway responsible for protecting the genome against modified nucleotides. DNA polymerase β (Pol β) participates in this process by removing the remnants of a damaged nucleotide and filling in the resulting gap. Pol β is overexpressed in some cancers and is synthetic lethal in cells deficient in BRCA1/2, providing additional impetus for identifying inhibitors of this enzyme.

View Article and Find Full Text PDF

Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.

View Article and Find Full Text PDF

Hemophilia B gene therapy treatments currently have not addressed the need for predictable, durable, active, and redosable factor IX (FIX). Unlike conventional gene therapy, engineered B Cell Medicines (BCMs) are durable, redosable, and titratable, and thus have the potential to address significant unmet needs in the Hemophilia B treatment paradigm. BE-101 is an autologous BCM comprised of expanded and differentiated B lymphocyte lineage cells genetically engineered ex vivo to secrete FIX-Padua.

View Article and Find Full Text PDF

Radiotherapy (RT) is a key component of comprehensive cancer treatment regimens; nevertheless, its concomitant immunosuppression may diminish therapeutic efficacy. In this study, we developed an injectable hydrogel system for the local delivery of PROteolysis TArgeting Chimeras (PROTACs), achieved by loading tumor cell membrane-fused liposome nanoparticles to enhance the anti-tumor effect. The system targeted Bromodomain-containing protein 4 (BRD4), and combined treatment with RT promoted DNA damage, reduced DNA repair and decreased tumor cell proliferation and survival.

View Article and Find Full Text PDF

Protein-nucleic acid interactions (PNI) play crucial roles in various life processes, including gene expression regulation, DNA replication, repair, recombination, and RNA processing and translation. However, accurately predicting these interactions remains challenging due to their complexity. This paper proposes a deep learning-based multi-task learning framework for predicting protein-nucleic acid interactions.

View Article and Find Full Text PDF