A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rolling schedule design for the ESP rolling process based on NSGA-II-DE. | LitMetric

Rolling schedule design for the ESP rolling process based on NSGA-II-DE.

ISA Trans

State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, Liaoning 110819, China; Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education, Shenyang 110819, China. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple processes connected closely during the endless strip production (ESP) rolling, it is difficult to obtain the global optimal solution by multi-objective modelling of a single process, and the parameters to be optimized coupled with each other. To obtain the optimal solution, a multi-objective optimization model combining the power consumption, product quality, and loading balance was proposed for the design of an ESP rolling schedule. The thickness and heating temperature were simultaneously taken as the decision variables for coupling the temperature and loading in the rolling process, and the non-dominated sorting genetic algorithm-II (NSGA-II) based on differential evolution (NSGA-II-DE) was applied to obtain the Pareto solutions. To select an optimal solution, a satisfaction function was designed and applied to fully utilize the Pareto solutions. Furthermore, to prove the precision and efficiency of the method, the online schedule and that obtained by the NSGA-II method were compared. The results proved that the final selected solution had better quality and a more balanced loading force than the other two types, which could provide guidance for the actual production process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.12.047DOI Listing

Publication Analysis

Top Keywords

esp rolling
12
optimal solution
12
rolling schedule
8
design esp
8
rolling process
8
solution multi-objective
8
pareto solutions
8
rolling
5
schedule design
4
process
4

Similar Publications