98%
921
2 minutes
20
Hepatic metabolism is an important process for evaluate the potential activity and toxicity of endocrine disrupting chemicals (EDCs) metabolites. Organization for Economic Co-operation and Development (OECD) has advocated the development of in vitro assays that mimic in vivo hepatic metabolism to eventually replace classical animal tests. In response to this need, we established a 3D mouse liver organoid (mLO) platform that mimics the animal model and is distinct from existing models. We evaluated the effects the activity of EDC metabolites generated through mLOs based on human cell-based reporter gene assays in addition to existing models. This study emphasizes the importance of hepatic ex-vivo and suggests the need a new metabolic model through a 3D mLOs platform. These results indicate that mLOs provides a novel biological method to screen for potential endocrine-disrupting activities of EDC metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.109184 | DOI Listing |
PLoS One
September 2025
Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center, ICMR collaborating center of excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHE
Prior studies from our laboratory have shown that cancer cells exposed to vitamin D3 exhibited reduced proliferation in breast cancer cells due to the upregulation of p53 and downregulation of cyclin-D1. Furthermore, in mice, our group has demonstrated that administration of 125 µg/kg of vitamin D3 retarded the growth of EAC tumors. But, it is unknown whether vitamin D3 exerts similar anti-cancer effects against cell lines representing carcinomas of the liver, colon and rectum, cervix, and brain.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany.
The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.
View Article and Find Full Text PDFJ Vis Exp
August 2025
The Ragon Institute of Mass General, MIT, and Harvard Main Street;
Ultraviolet B (UVB) radiation (280-320 nm) has been recognized as a carcinogen since 1928, leading to sun exposure minimization. However, epidemiological studies suggest that sun exposure correlates with increased life expectancy and reduced incidence of cardiovascular diseases and certain cancers such as colon and endometrial cancer. UVB exposure also influences liver metabolism, protects against hepatocellular lipotoxicity, and affects metabolic health.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China.
Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.
View Article and Find Full Text PDFJ Virol
September 2025
Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Rift Valley fever virus (RVFV) causes mild to severe disease in livestock and humans. It was first identified in 1931 during an epizootic in Kenya and has spread across Africa and into the Middle East. Hematopoietic cells are one of the major targets of RVFV ; however, their contribution to RVFV pathogenesis remains poorly understood.
View Article and Find Full Text PDF