Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ajowan () is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan. Based on the GC-MS analysis, thymol, carvacrol, -cymene, and γ-terpinene were determined as the main components of the oil. The thymol content ranged from 34.16% in the Ardabil population (irrigation at 50% and nano silicon at 1.5 mM) to 65.71% in the Khorbir population (without nano silicon and irrigation at 50%). The highest phenolic content was in Khormo with irrigation at 90% and without nano silicon (172.3 mg TAE/g DW), while the lowest was found in Hamedan (irrigation at 50% and without nano silicon (7.2 mg TAE/g DW)). Irrigation at 50% and no nano silicon treatment led to an increase in total flavonoids in Ardabil (46.786 mg QUE/g DW). The antioxidant activity of ajowan was evaluated using the DPPH assay. Accordingly, the highest antioxidant capacity was observed in Khormo (irrigation at 90% without nano silicon; 4126 µg/mL). Moreover, the highest thymol content was observed in the Khorbir population with irrigation at 50% and without nano silicon treatment. Furthermore, correlation and principal component analysis (PCA) provide new insights into the production of ajowan from their substrates under nano silicon treatment and water deficit conditions. Finally, the results revealed information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719498PMC
http://dx.doi.org/10.3390/foods14010124DOI Listing

Publication Analysis

Top Keywords

nano silicon
40
irrigation 50%
20
50% nano
16
antioxidant capacity
12
silicon treatment
12
nano
10
silicon
9
chemical composition
8
water deficit
8
essential oil
8

Similar Publications

Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.

View Article and Find Full Text PDF

Enhanced Bendability and Viscoelastic behavior in High-quality 2H-SiC@SiO2 Nanowires.

Nanotechnology

September 2025

State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.

Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.

View Article and Find Full Text PDF

Composite nano copper carrier combining cuproptosis and photodynamic therapy for spatiotemporal synergistic anti-tumor therapy.

Biomater Sci

September 2025

Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei,

Cuproptosis is a copper-dependent programmed cell death triggered by mitochondrial dysfunction, which offers significant anti-tumor potential but requires tumor-specific copper delivery to avoid systemic toxicity. Here, we developed a synergistic nanoplatform (CuO@SiO-Ce6, CSC) integrating cuproptosis induction with photodynamic therapy (PDT). A cuprous oxide (CuO) core was encapsulated in silicon dioxide and covalently linked to the photosensitizer Ce6.

View Article and Find Full Text PDF

Hard entropy limits of impurity doping prevent further miniaturization of low nanoscale silicon-based very large scale integration (VLSI) devices, thereby obstructing the path toward more energy-efficient VLSI designs with higher yield in compute power. As demonstrated here by synchrotron UV photoelectron spectroscopy (UPS) and X-ray absorption spectroscopy in total fluorescence yield mode (XAS-TFY), intrinsic Si at the bottom of the nanoscale (i-nano-Si) turns into strong p- or n-Si by embedding in silicon nitride (SiN) or silicon dioxide (SiO), respectively. The associated Nanoscale Electronic Structure Shift Induced by Anions at Surfaces (NESSIAS) creates a p/n junction in i-nano-Si by the quantum-chemical impact of SiN- vs SiO-coating, providing energy landscapes to accumulate electrons (holes) when SiO- (SiN-) coated, with free charge carriers provided by metallic interconnects.

View Article and Find Full Text PDF

To address post-harvest issues of litchi, including browning, water loss, and nutrient degradation, a moisture microenvironment-regulating electro spun membrane was prepared by incorporating hydrophobic carnauba wax (CW)@nano silica (SiO) composite powder into a polyethylene terephthalate (PET) matrix via electro spinning. The dynamic water penetration equilibrium was evaluated by monitoring the water vapor absorption of the electrospun membrane within 12 h, while the effects of CW@SiO on the micro-structure, mechanical properties, hydrophobicity, and thermal stability were investigated. Results showed that the tensile strength of the PET-2.

View Article and Find Full Text PDF