Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings. The results demonstrated that NaCl stress markedly impeded the growth of rice seedlings after seven days of NaCl treatment. The foliar application of nano-silicon followed by NaCl stress alleviated the growth of rice seedlings, markedly improved the spatial conformation of the root system, and enhanced photosynthesis compared with that of NaCl stress alone. The activities of antioxidant enzymes were improved. The contents of antioxidants were increased, and the over-accumulation of ROS was reduced. Furthermore, the foliar application of nano-silicon was found to enhance the uptake of Si, K, and Ca in plants, while simultaneously reducing Na and Cl accumulation. Additionally, the content of IAA, CTK, GA, JA, and SA was increased, and ABA was decreased. In conclusion, the foliar application of nano-silicon has been demonstrated to alleviate salt stress injury and improve the growth of rice seedlings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720159PMC
http://dx.doi.org/10.3390/ijms26010085DOI Listing

Publication Analysis

Top Keywords

rice seedlings
20
salt stress
16
growth rice
16
foliar application
16
application nano-silicon
16
nacl stress
12
stress
8
rice
8
nano-silicon
6
salt
5

Similar Publications

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.

View Article and Find Full Text PDF

Introduction: Rice is mainly consumed by half of the world's population. The imminent climate change and population growth expected in the next 30 years will outpace the current rice production capacity, posing risks to food and nutrition security in developing nations. One simplified approach to address this challenge is to improve photosynthetic capacity by increasing chlorophyll content in leaves and stems.

View Article and Find Full Text PDF

Cadmium telluride quantum dots (CdTe QDs) have been increasing in the environment because of their large application in solar panels and biological industries. However, the potential role and bioaccumulation behavior of CdTe QDs in plants are unknown. Herein, the toxicity of CdTe QDs on the growth and the underlying mechanisms were explored in rice.

View Article and Find Full Text PDF

The defensin-like protein OsCDT5 reduces Cd accumulation in rice (Oryza sativa L.).

Plant Physiol Biochem

August 2025

College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China. Electronic address:

Rice (Oryza sativa L.) is one of the most important food crops worldwide, with a strong capacity for Cd accumulation. Cd accumulation in rice is regulated by multiple genes.

View Article and Find Full Text PDF