98%
921
2 minutes
20
Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression. However, a deeper understanding of the complex mechanisms associated with DNA methylation, histone post-translational changes and RNA methylation in the context of regulatory pathways remains to be elucidated. We here report on how DNA methylation and histone acetylation inhibition differentially affect CXCL8 signaling in primary human non-COPD and COPD airway cells. Airway smooth muscle (ASM) cells, a pivotal cell type in COPD, were isolated from the small airways of heavy smokers with and without COPD. Histone acetylation and DNA methylation were inhibited before the TGF-β1 stimulation of cells. Subsequently, CXCL8 production and the abundance and activation of pertinent transcription regulatory proteins (NF-κB, p38 MAPK and JNK) were analyzed. TGF-β1-stimulated CXCL8 release from ASM cells from 'healthy' smoker subjects was significantly modulated by DNA methylation (56.32 pg/mL and 56.60 pg/mL) and acetylation inhibitors (27.50 pg/mL and 48.85 pg/mL) at 24 and 48 h, respectively. However, modulation via the inhibition of DNA methylation (34.06 pg/mL and 43.18 pg/mL) and acetylation (23.14 pg/mL and 27.18 pg/mL) was observed to a lesser extent in COPD ASM cells. These changes were associated with differences in the TGF-β1 activation of NF-κB and MAPK pathways at 10 and 20 min. Our findings offer insight into differential epigenetics in controlling COPD ASM cells and provide a foundation warranting future studies on epigenetic differences associated with COPD diagnosis. This would provide a scope for developing therapeutic interventions targeting signaling and epigenetic pathways to improve patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720536 | PMC |
http://dx.doi.org/10.3390/cells14010031 | DOI Listing |
Epigenomics
September 2025
College of Physical Education, Yangzhou University, Yangzhou, China.
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.
View Article and Find Full Text PDFTree Physiol
September 2025
Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Microbiology, University College Cork, Cork, T12 Y337, Ireland.
The genomes of 43 distinct lactococcal strains were reconstructed by a combination of long- and short-read sequencing, resolving the plasmid complement and methylome of these strains. The genomes comprised 43 chromosomes of approximately 2.5 Mb each and 269 plasmids ranging from 2 to 211 kb (at an average occurrence of 6 per strain).
View Article and Find Full Text PDFJ Investig Med
September 2025
Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México.
It has been reported that DNA methylation in the epigenetic profile of the genes LEP and ADIPOQ is associated with obesity. To the best of our knowledge, there are no previous reports assessing the methylation of the LEP, LEPR, and ADIPOQ genes in subjects with metabolically healthy obesity (MHO). Therefore, the aim of this study was to determine the association between methylation of the LEP, LEPR, and ADIPOQ genes with the MHO phenotype.
View Article and Find Full Text PDFBioimpacts
August 2025
Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye.
Colorectal cancer (CRC) constitutes a significant global health challenge, accounting for a considerable proportion of cancer cases and associated mortality. Projections indicate a potential increase in new cases by 2040, attributed to demographic factors such as aging and population growth. Although advancements in the understanding of CRC pathophysiology have broadened treatment options, challenges such as drug resistance and adverse effects persist, highlighting the necessity for enhanced diagnostic methodologies.
View Article and Find Full Text PDF