Simulation of high signal-to-noise ratio resonant photodetector for homodyne measurement and its verification.

Rev Sci Instrum

Key Laboratory of Time Reference and Applications, National Time Service Center, Chinese Academy of Sciences, Xi'an, Shaanxi 710600, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, two models for simulating the shot noise and electronic noise performances of resonant photodetectors designed for homodyne measurements are presented. One is based on a combination of a buffer and a low-noise amplifier, and the other is based on an operational amplifier. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the models provide a highly efficient guide for the development of a high signal-to-noise ratio (SNR) resonant photodetector. Furthermore, we demonstrate a high SNR resonant photodetector for homodyne measurements at the 147 MHz optical sideband, achieving a 20.8 dB SNR of the shot noise to the electronic noise with a 2 mW optical signal input, utilizing a combination of a buffer and a low-noise amplifier. Concurrently, we have obtained another resonant photodetector at the 1.14 GHz optical sideband, which exhibits a 13 dB SNR based on an operational amplifier.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0235927DOI Listing

Publication Analysis

Top Keywords

resonant photodetector
16
high signal-to-noise
8
signal-to-noise ratio
8
photodetector homodyne
8
shot noise
8
noise electronic
8
electronic noise
8
homodyne measurements
8
combination buffer
8
buffer low-noise
8

Similar Publications

Growth of highly uniform 2-inch MoS wafers using liquid precursor spraying.

Nanoscale

September 2025

College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.

With the progress of study, MoS has been proven to show excellent properties in electronics and optoelectronics, which promotes the fabrication of future novel integrated circuits and photodetectors. However, highly uniform wafer-scale growth is still in its early stage, especially regarding how to control the precursor and its distribution. Herein, we propose a new method, spraying the Mo precursor, which is proven to fabricate highly uniform 2-inch monolayer MoS wafers.

View Article and Find Full Text PDF

Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.

View Article and Find Full Text PDF

Recent advances in nanostructured photodetectors have enabled precise control over light absorption while minimizing photon losses. In this work, we demonstrate a plasmonic metamaterial absorber based on two-dimensional MXene (Ti₃C₂Tₓ) featuring geometrically tunable tetragram-shaped arrays. Through finite-difference time-domain (FDTD) simulations and structural optimization, we achieved over 90% photon absorption across the broadband spectral range of 1000-2500 nm, representing a significant enhancement in operational bandwidth.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) are rapidly developing as a class of versatile materials combining the exceptional optoelectronic characteristics with tunable ferroelectricity and nonlinear optical responses. Spanning across the three-dimensional, two-dimensional, and one-dimensional architectures, these materials have demonstrated exceptional structural diversity, providing immense opportunities for tailored property design. We start by referencing the classic oxide perovskites, sharing differences and similarities of these material systems.

View Article and Find Full Text PDF

Narrowband photodetectors with precise spectral control offer significant potential for applications such as color imaging and machine vision. However, existing demonstrations have encountered challenges due to restricted absorption, the need for additional filters, or the inclusion of thick absorbing layers to facilitate charge collection filtering mechanisms. These constraints have resulted in suboptimal detectivity, inadequate color control, or slow response.

View Article and Find Full Text PDF