Chitosan/Alginate-Based Hydrogel Loaded With VE-Cadherin/FGF as Scaffolds for Wound Repair in Different Degrees of Skin Burns.

J Biomed Mater Res B Appl Biomater

Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair. Herein, based on chitosan (CS)/alginate (SA)/poly(ethylene glycol) diacrylate (PEGDA), a basic hydrogel with hemostasis and antibacterial properties was prepared, and loaded with vascular endothelial cadherin (VE-cadherin) and fibroblast growth factors (FGF) to promote the co-culture of various skin cells, suitable for treating various skin injury types: (1) Construct a three-dimensional microenvironment conducive to the release of drugs and factors using natural biological macromolecules CS/SA. (2) Promote the cell growth by loading growth factors. (3) Establish skin burn models of different degrees and observe the repair process. From the results, the 3D microenvironment provided by hydrogel could support the active growth of cells for 12 days. Furthermore, deep burns with full-thickness skin were substantially repaired within about 24 days. Collectively, CS/SA hydrogel containing VE-cadherin and FGF can promote tissue healing in wounds with necrotic tissue, making it an ideal candidate for burn treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.35533DOI Listing

Publication Analysis

Top Keywords

growth factors
8
fgf promote
8
skin
5
chitosan/alginate-based hydrogel
4
hydrogel loaded
4
loaded ve-cadherin/fgf
4
ve-cadherin/fgf scaffolds
4
scaffolds wound
4
wound repair
4
repair degrees
4

Similar Publications

Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.

Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.

View Article and Find Full Text PDF

Objective: Aim: To evaluate clinical applicability of immune mediator's interleukin-16, immunoglobulin E along with eosinophil count in diagnosing COVID-19 and determining its severity.

Patients And Methods: Materials and Methods: Cross-sectional case-control study was conducted at Al-Najaf General Hospital, Najaf, Iraq between March and August 2024. 120 participants: 60 confirmed COVID-19 cases and 60 healthy controls which matched cases in terms of age and sex.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF

This study aimed to histomorphometrically evaluate the effect of guided bone regeneration (GBR) and two implant surfaces on the thickness and height of newly formed bone in dehiscence defects around titanium implants. Three premolars and the first bilateral molar were extracted from ten adult mongrel dogs, and 40 buccal bone dehiscences measuring 5 mm in height and 4 mm in width were created using a University of North Carolina (UNC) periodontal probe to confirm the dimensions. Forty implants were randomly assigned to one of four groups: oxidized implant surfaces (OIS, n = 10), turned/machined implant surfaces (TIS, n = 10), OIS + GBR (n = 10), and TIS + GBR (n = 10).

View Article and Find Full Text PDF