Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interaction between proteins and aroma compounds significantly impacts cheese flavor retention during processing. However, it is still unknown how cheese proteins and the aldehyde aroma compounds (AACs) interact. This study aims to clarify the interaction mechanisms between the AACs (benzaldehyde, 2-methylpropanal, 2-methylbutanal and 3-methylbutanal) and β-casein (β-CN) using SPME-GC/MS, multi-spectroscopy techniques, and molecular dynamics simulations. The results reveal notable variations in the binding abilities of the four AACs and β-CN, with the strongest binding observed for 3-methylbutanal. Specifically, the binding affinity (Ka) values between β-casein and benzaldehyde, 2-methylpropanal, 2-methylbutanal, and 3-methylbutanal are 2.26 × 10, 1.78 × 10, 2.03 × 10, and 2.52 × 10 M, respectively, indicating moderate binding affinity. Additionally, the quenching rate constants (Kq) for interactions with these compounds are 2.57 × 10, 2.92 × 10, 3.74 × 10, and 4.81 × 10 Ms, significantly exceeding the collisional quenching limit, suggesting specific interactions. The interactions between the four AACs and β-CN occur through irreversible covalent bonding, primarily involving hydrogen bonds and hydrophobic interactions. The quenching mechanism of β-CN and the four AACs is static, which leads to changes in the secondary structure and microenvironment of β-CN. Molecular docking and dynamics simulations confirm that hydrogen bonds and hydrophobic interactions are the key driving forces for the binding of β-CN with the four AACs, and contribute to the stability of the composite system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115451DOI Listing

Publication Analysis

Top Keywords

aroma compounds
12
aldehyde aroma
8
molecular dynamics
8
benzaldehyde 2-methylpropanal
8
2-methylpropanal 2-methylbutanal
8
2-methylbutanal 3-methylbutanal
8
dynamics simulations
8
aacs β-cn
8
binding affinity
8
hydrogen bonds
8

Similar Publications

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF

Jasmine tea: unveiling the secrets of processing, flavor characteristics, and potential health benefits.

Crit Rev Food Sci Nutr

September 2025

Key Laboratory of Tea Science of Ministry of Education and Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha, China.

Jasmine tea, a further processing tea made by scenting green, black, oolong, or other tea with jasmine flowers, is widely appreciated worldwide for its fragrant aroma, refreshing taste, and beneficial health effects. The production of jasmine tea is a meticulous and complex process that involves chemical reactions, physical adsorption, and flavor interaction effects at the sensory level between jasmine and tea. This paper provides a comprehensive review of the research on the processing technology, characteristic aroma formation, nonvolatile compounds, and health benefits of jasmine tea.

View Article and Find Full Text PDF

Functional Metabolism of Aromatic Precursors in Hanseniaspora: A Source of Natural Bioactive Compounds.

FEMS Yeast Res

September 2025

Enology and Fermentation Biotechnology Area, Department of Science and Food Technology. Faculty of Chemistry, Universidad de la Republica. Montevideo, Uruguay.

Hanseniaspora species are among the most prevalent yeasts found on grapes and other fruits, with a growing role in wine fermentation due to their distinctive metabolic profiles. This review focuses on the functional divergence within the genus, particularly between the fast-evolving fruit clade and the slow-evolving fermentation clade. While species in the fruit clade often exhibit limited fermentation capacity with interesting enzymatic activity, members of the fermentation clade-especially H.

View Article and Find Full Text PDF

Cerrado ash reduces volatile emissions from faeces but does not influence the olfactory responses of the dung beetles.

Naturwissenschaften

September 2025

Laboratório de Ecologia E Conservação de Invertebrados, LECIN, Departamento de Ecologia E Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, PO Box 3037, CEP 37.203-202, Lavras, MG, Brasil.

Fire is a key natural disturbance influencing physical, chemical, and biological processes in the Cerrado. Ash, a fire byproduct, may significantly influence soil macrofauna through its chemical properties. Dung beetles (Scarabaeinae), critical components of Cerrado soil macrofauna, provide key ecological functions and services.

View Article and Find Full Text PDF

What Makes Lupins Less Palatable to Consumers? Can the Sensory Quality of Lupin be Improved and Commercialized?

Compr Rev Food Sci Food Saf

September 2025

School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, Western Australia, Australia.

Introducing underutilized legumes as plant-based protein sources to daily meals is an approach to address the increasing demand for alternative proteins. However, legumes often exhibit off-flavors and aromas, causing negative consumer perceptions. Lupins are an underutilized legume that is becoming popular as a plant protein source due to their high protein, fiber, and low starch contents.

View Article and Find Full Text PDF