Supramolecular phosphorescent assemblies based on cucurbit[8]uril and bromophenylpyridine derivatives for dazomet recognition.

Spectrochim Acta A Mol Biomol Spectrosc

Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A bromophenylpyridine derivative (N1) was designed, synthesized, and the molecule was incorporated into the cavity of the cucurbit[8]uril (Q[8]) as a guest to form a 2:1 host-guest complex. This complex demonstrates good room temperature phosphorescence (RTP) properties in aqueous solution. The host-guest interaction and optical properties of N1@Q[8] in aqueous solution were studied by means of H NMR, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, phosphorescence spectroscopy, scanning electron microscopy and inverted fluorescence microscopy. The results show that the bromophenyl part of the guest molecule enters the cavity of Q[8], while the other part of N1 remains outside the cavity, resulting in a 2:1 supramolecular structure. This assembly exhibits specific recognition of dazomet on the phosphorescence spectrum with a detection limit of 8.8329 × 10 mol·L. Collectively, this finding opens up a new possibility for the potential application of room temperature phosphorescent materials in analytical detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.125695DOI Listing

Publication Analysis

Top Keywords

room temperature
8
aqueous solution
8
supramolecular phosphorescent
4
phosphorescent assemblies
4
assemblies based
4
based cucurbit[8]uril
4
cucurbit[8]uril bromophenylpyridine
4
bromophenylpyridine derivatives
4
derivatives dazomet
4
dazomet recognition
4

Similar Publications

Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.

View Article and Find Full Text PDF

Ionic Liquid Engineered Defect-Driven Green Emitting Zero-Dimensional CsPbBr Microdisks.

J Phys Chem Lett

September 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.

Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.

View Article and Find Full Text PDF

The denitrogenation of tetrazoles is typically performed using transition-metal catalysts at high temperatures due to the inherent stability of the tetrazole group. In this work, we present, for the first time, an electrochemical method for denitrogenating tetrazoles at room temperature. This method employs a sacrificial zinc anode and a platinum cathode in a solvent mixture of acetonitrile and water under a constant current in an undivided cell.

View Article and Find Full Text PDF

The chick embryo ventricular cardiomyocyte model provides students easy access to experiments involving fundamental features of cardiac cell physiology and pharmacology. Using standard physiology teaching laboratories and basic cell culture equipment, spontaneously beating colonies of electrically-connected cardiomyocytes can be obtained by the students themselves. Students learn, aseptic techniques and cell culture alongside experiments illustrating, at the simplest level of experimentation, how beating rate can be altered physiologically or pharmacologically.

View Article and Find Full Text PDF

Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability.

View Article and Find Full Text PDF