Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana. This bioinformatics pipeline performs automatic identification of developmental zones in root tissue images. This also includes apoplastic pH measurements, which is useful for modeling hormone signaling and cell physiological responses. We show that this nf-core standard-based pipeline successfully automates tissue zone segmentation and is both high-throughput and highly reproducible. In short, a deep-learning module deploys deterministically trained convolutional neural network models and augments the segmentation predictions with measures of prediction uncertainty and model interpretability, while aiming to facilitate result interpretation and verification by experienced plant biologists. We observed a high statistical similarity between the manually generated results and the output of the nf-root.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706687PMC
http://dx.doi.org/10.1017/qpb.2024.11DOI Listing

Publication Analysis

Top Keywords

root tissue
12
best-practice pipeline
8
pipeline deep-learning-based
8
deep-learning-based analysis
8
microscopy images
8
developmental zones
8
plant root
8
nf-root best-practice
4
pipeline
4
analysis apoplastic
4

Similar Publications

Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.

View Article and Find Full Text PDF

Purpose: This systematic review provides a critical evaluation, synthesis of the existing literature on isotretinoin's effects on craniomaxillofacial bone.

Methods: Following the PRISMA guidelines and registered in PROSPERO, the review was conducted in August 2024 across various databases. Eligible in vivo studies were analysed for their assessment of isotretinoin's effects on craniomaxillofacial bone.

View Article and Find Full Text PDF

Objectives: Loeys-Dietz syndrome comprises genetically discrete subtypes of varying clinical severity. This study integrates longitudinal Loeys-Dietz syndrome clinical outcomes after aortic root replacement with transcriptomic analysis of aortic smooth muscle cell dysregulation to investigate mechanisms governing this subtype-specific aortic vulnerability.

Methods: Single institutional experience with aortic root replacement for nondissected aneurysm in patients with Loeys-Dietz syndrome was reviewed for midterm survival and distal aortic events (subsequent aortic intervention, aneurysm, or dissection).

View Article and Find Full Text PDF

Background And Aim: The incisive (nasopalatine) canal is an important anatomical structure of the anterior maxilla. It holds significance for surgeries and implant placement in the central incisor region. The size, shape, and relation with surrounding bones may vary by age, gender, and ethnicity.

View Article and Find Full Text PDF

Objective: To develop a deep learning method for fast and accurate prediction of Specific Absorption Rate (SAR) distributions in the human head to support real-time hyperthermia treatment planning (HTP) of brain cancer patients.

Approach: We propose an encoder-decoder neural network with cross-attention blocks to predict SAR maps from brain electrical properties, tumor 3D isocenter coordinates and microwave antenna phase settings. A dataset of 201 simulations was generated using finite-element modeling by varying tissue properties, tumor positions, and antenna phases within a human head model equipped with a three-ring phased-array applicator.

View Article and Find Full Text PDF