98%
921
2 minutes
20
This paper presents a novel approach for generating virtual non-contrast planning computed tomography (VNC-pCT) images from contrast-enhanced planning CT (CE-pCT) scans using a deep learning model. Unlike previous studies, which often lacked sufficient data pairs of contrast-enhanced and non-contrast CT images, we trained our model on dual-energy CT (DECT) images, using virtual non-contrast CT (VNC CT) images as outputs instead of true non-contrast CT images. We used a deterministic method to convert CE-pCT images into pseudo DECT images for model application. Model training and evaluation were conducted on 45 patients. The performance of our model, 'VNC-Net', was evaluated using various metrics, demonstrating high scores for quantitative performance. Moreover, our model accurately replicated target VNC CT images, showing close correspondence in CT numbers. The versatility of our model was further demonstrated by applying it to pseudo VNC DECT generation, followed by conversion to VNC-pCT. CE-pCT images of ten liver cancer patients and ten left-sided breast cancer patients were used. A quantitative comparison with true non-contrast planning CT (TNC-pCT) images validated the accuracy of the generated VNC-pCT images. Furthermore, dose calculations on CE-pCT and VNC-pCT images from patients undergoing volumetric modulated arc therapy for liver and breast cancer treatment showed the clinical relevance of our approach. Despite the model's overall good performance, limitations remained, particularly in maintaining CT numbers of bone and soft tissue less influenced by contrast agent. Future research should address these challenges to further improve the model's accuracy and applicability in radiotherapy planning. Overall, our study highlights the potential of deep learning models to improve imaging protocols and accuracy in radiotherapy planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684624 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316099 | PLOS |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.
Sci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, Japan.
Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.
View Article and Find Full Text PDF