98%
921
2 minutes
20
Existing learning-based remote sensing change detection (RSCD) commonly uses semantic-agnostic binary masks as supervision, which hinders their ability to distinguish between different semantic types of changes, resulting in a noisy change mask prediction. To address this issue, this paper presents a Language-guided semantic clustering framework that can effectively transfer the rich semantic information from the contrastive language-image pretraining (CLIP) model for RSCD, dubbed LSC-CD. The LSC-CD considers the strong zero-shot generalization of the CLIP, which makes it easy to transfer the semantic knowledge from the CLIP into the CD model under semantic-agnostic binary mask supervision. Specifically, the LSC-CD first constructs a category text-prior memory bank based on the dataset statistics and then leverages the CLIP to transform the text in the memory bank into the corresponding semantic embeddings. Afterward, a CLIP adapter module (CAM) is designed to fine-tune the semantic embeddings to align with the change region embeddings from the input bi-temporal images. Next, a semantic clustering module (SCM) is designed to cluster the change region embeddings around the semantic embeddings, yielding the compact change embeddings that are robust to noisy backgrounds. Finally, a lightweight decoder is designed to decode the compact change embeddings, yielding an accurate change mask prediction. Experimental results on three public benchmarks including LEVIR-CD, WHU-CD, and SYSU-CD demonstrate that the proposed LSC-CD achieves state-of-the-art performance in terms of all evaluated metrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678962 | PMC |
http://dx.doi.org/10.3390/s24247887 | DOI Listing |
Cereb Cortex
August 2025
Department of Psychology, University of Milano-Bicocca, Milan, Italy.
Semantic composition allows us to construct complex meanings (e.g., "dog house", "house dog") from simpler constituents ("dog", "house").
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.
Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.
Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.
IEEE J Biomed Health Inform
September 2025
Drug-target interaction (DTI) identification is of great significance in drug development in various areas, such as drug repositioning and potential drug side effects. Although a great variety of computational methods have been proposed for DTI prediction, it is still a challenge in the face of sparsely correlated drugs or targets. To address the impact of data sparsity on the model, we propose a multi-view neighborhood-enhanced graph contrastive learning approach (MneGCL), which is based on graph clustering according to the adjacency relationship in various similarity networks between drugs or targets, to fully exploit the information of drugs and targets with few corrections.
View Article and Find Full Text PDFAccid Anal Prev
September 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China. Electronic address:
Aggressive driving is a major contributor to traffic fatalities, necessitating reliable assessment methods to guide driver interventions. Existing methods, however, lack granularity in assessing both the severity and specific maneuver categories of aggressive driving behaviors. This paper proposes a novel framework for multidimensional aggressiveness assessment using lateral-longitudinal acceleration and vehicle speed.
View Article and Find Full Text PDFNeuroscience
September 2025
Department of Psychology & Health Studies, University of Saskatchewan, Saskatoon, Canada. Electronic address:
Attentional processes are crucial to ensure successful reading, and theories of dyslexia propose that dysfunctional attention networks may contribute to the observed reading deficits. The goals of this study were to localize a region of the frontal-eye-field (FEF) involved in both reading and attention and examine its connectivity with regions in the reading and attention networks, given the known role of the FEF in attentional processes and theorized role in reading. In Experiment 1, we revisited the results of our previous hybrid reading and attention study.
View Article and Find Full Text PDF