A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Co-Amorphization, Dissolution, and Stability of Quench-Cooled Drug-Drug Coamorphous Supersaturating Delivery Systems with RT-Unstable Amorphous Components. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Supersaturating drug delivery systems (SDDSs) have gained significant attention as a promising strategy to enhance the solubility and bioabsorption of Biopharmaceutics Classification System (BCS) II drugs. To overcome challenges associated with polymer-based amorphous SDDS (aSDDS), coamorphous (CAM) systems have emerged as a viable alternative. Among them, "drug-drug" CAM (ddCAM) systems show considerable potential for combination drug therapy. However, many drugs in their pure amorphous forms are unstable at room temperature (RT), complicating their formation and long-term stability profiles. Consequently, limited knowledge exists regarding the behavior of ddCAMs containing RT-unstable components formed via quench cooling. : In this study, we used naproxen (NAP), a RT-unstable amorphous drug, in combination with felodipine (FEL) or nitrendipine (NTP), two RT-stable amorphous drugs, to create "FEL-NAP" and "NTP-NAP" ddCAM pairs via quench cooling. Our work used a series of methods to perform a detailed analysis on the co-amorphization, dissolution, solubility, and stability profiles of ddCAMs containing RT-unstable drugs, contributing to advancements in co-amorphization techniques for generating SDDS. : This study revealed that the co-amorphization and stability profiles of ddCAMs containing RT-unstable components produced via a quench-cooling method were closely related to drug-drug pairing types and ratios. Both quench-cooling and incorporation into coamorphous systems improved the dissolution, solubility, and physical stability of individual APIs. : Our findings provide deeper insight into the co-amorphization, dissolution, and stability characteristics of specific drug-drug coamorphous systems FEL-NAP and NTP-NAP, offering valuable guidance for developing new ddCAM coamorphous formulations containing some RT-unstable drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677066PMC
http://dx.doi.org/10.3390/pharmaceutics16121488DOI Listing

Publication Analysis

Top Keywords

co-amorphization dissolution
12
stability profiles
12
ddcams rt-unstable
12
dissolution stability
8
drug-drug coamorphous
8
delivery systems
8
rt-unstable amorphous
8
rt-unstable components
8
quench cooling
8
dissolution solubility
8

Similar Publications