98%
921
2 minutes
20
is an aerobic, Gram-negative bacterium that is responsible for many plant diseases. The bacterium is the causal agent of Pierce's disease in grapes and is also responsible for citrus variegated chlorosis, peach phony disease, olive quick decline syndrome and leaf scorches of various species. The production of biofilm is intrinsically linked with persistence and transmission in . Biofilm formation is regulated by members of the Diffusible Signal Factor (DSF) quorum sensing signalling family which are comprised of a series of long chain -unsaturated fatty acids. This article describes the evaluation of a library of -acyl sulfonamide bioisosteric analogues of BDSF, DSF1 and DSF2 for their ability to control biofilm production in . The compounds were screened against both the wild-type strain Temecula and an * mutant which can perceive but not produce DSF. Planktonic cell abundance was measured via OD600 while standard crystal violet assays were used to determine biofilm biomass. Several compounds were found to be effective biofilm inhibitors depending on the nature of the sulfonamide substituent. The findings reported here may provide future opportunities for biocontrol of this important plant pathogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727845 | PMC |
http://dx.doi.org/10.3390/microorganisms12122496 | DOI Listing |
Pest Manag Sci
September 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.
View Article and Find Full Text PDFInt J Food Microbiol
September 2025
Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States. Electronic address:
Alternatives to the use of chemical antimicrobials to treat meat and poultry carcasses during processing and food processing environments are of interest to consumers globally. The influence of bacterial cell concentration, membrane permeabilizing agents, and effect on macromolecules of the photosensitizer curcumin (PSC) on Salmonella inactivation in a medium model and on chicken skin and the inactivation of Listeria monocytogenes biofilms on stainless steel were determined. The addition of 30 mg/mL CaCl or higher significantly reduced the level of Salmonella compared to PSC treatment alone in a liquid media system.
View Article and Find Full Text PDFJ Food Prot
September 2025
Department of Food, Nutrition, Dietetics and Health, Kansas State University. Electronic address:
Foodborne outbreaks and recalls within the tree fruit industry are making producers re-evaluate appropriate cleaning and sanitation practices during harvesting. Without effective sanitation, bacteria can create niches and form biofilms. This study evaluated the efficacy of silver dihydrogen citrate (SDC) and chlorine dioxide (ClO) gas to control Escherichia coli and Listeria innocua on experimentally inoculated harvesting equipment at commercial apple packinghouses within the Midwest and Pacific Northwest regions.
View Article and Find Full Text PDFChem Biodivers
September 2025
Medical Faculty, University of Niš, Niš, Serbia.
Otomycosis is a fungal infection of the external auditory canal, predominantly caused by Candida spp. The increasing resistance of these pathogens to conventional antifungal agents requires the exploration of alternative therapeutic approaches. This study was designed to assess the antifungal, anti-virulence, synergistic potential, and mechanism of action of Thymus vulgaris essential oil (EO) against Candida spp.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
The problem of hospital-acquired infections arising from inadequate antimicrobial and antibiofilm performance in medical textiles is an increasingly urgent threat to public health. The dual strategy combining superhydrophobic surfaces with aPDT exhibits potent antibacterial efficacy and barely triggers the risk of antimicrobial resistance, but still encounters significant challenges, including intricate fabrication methods and narrow spectral absorption of single-photosensitizer (PS) systems. A superhydrophobic-photodynamic dual antimicrobial polyester fabric is developed herein for medical applications to address these challenges.
View Article and Find Full Text PDF