Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this review, we investigated the genetic diversity and evolutionary dynamics of the species that includes both Marburg virus (MARV) and Ravn virus (RAVV). Using sequence data from natural reservoir hosts and human cases reported during outbreaks, we conducted comprehensive analyses to explore the genetic variability, constructing haplotype networks at both the genome and gene levels to elucidate the viral dynamics and evolutionary pathways. Our results revealed distinct evolutionary trajectories for MARV and RAVV, with MARV exhibiting higher adaptability across different ecological regions. MARV showed substantial genetic diversity and evidence of varied evolutionary pressures, suggesting an ability to adapt to diverse environments. In contrast, RAVV demonstrated limited genetic diversity, with no detected recombination events, suggesting evolutionary stability. These differences indicate that, while MARV continues to diversify and adapt across regions, RAVV may be constrained in its evolutionary potential, possibly reflecting differing roles within the viral ecology of the species. Our analysis explains the evolutionary mechanisms of these viruses, highlighting that MARV is going through evolutionary adaptation for human-to-human transmission, alarmingly underscoring the global concern about MARV causing the next pandemic. However, further transdisciplinary One Health research is warranted to answer some remaining questions including the host range and genetic susceptibility of domestic and wildlife species as well as the role of the biodiversity network in the disease's ecological dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728648PMC
http://dx.doi.org/10.3390/pathogens13121107DOI Listing

Publication Analysis

Top Keywords

genetic diversity
12
marburg virus
8
evolutionary
8
marv
7
genetic
5
genomic evolution
4
evolution phylodynamics
4
species
4
phylodynamics species
4
species marburg
4

Similar Publications

Bioinformatics analysis of a geneframeshift mutation in a patient with Dent disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Nephropathy and Rheumatology, Third Xiangya Hospital, Central South University, Changsha 410013.

Dent disease is a rare X-linked recessive inherited renal tubular disorder characterized by low molecular weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, and other clinical features, and can lead to progressive renal failure. It is primarily caused by mutations in the gene. This article reports the case of a 10-year-old male patient of Chinese descent who was incidentally found to have asymptomatic proteinuria during a routine health examination.

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

m6A-Mediated Methylation Patterns and Their Association With Obstructive Sleep Apnea in Lung Adenocarcinoma.

Cancer Rep (Hoboken)

September 2025

Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou, Jiangsu, China.

Background: Epigenetic regulation significantly affects immune responses in lung adenocarcinoma (LUAD). However, the role of RNA N6-methyladenosine (m6A) modification, especially in obstructive sleep apnea-hypopnea syndrome (OSAHS) within LUAD, is not well understood.

Methods: This study examined m6A modification patterns in 973 LUAD patients using 23 regulatory genes.

View Article and Find Full Text PDF

Metabolic benefits conferred by duplication of the facilitated trehalose transporter in Lepidoptera.

Insect Sci

September 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China.

In addition to being one of the primary processes for the formation and expansion of gene families, gene duplication also establishes the basis for the diversity and redundancy of gene functions, providing an abundance of genetic resources and a potent adaptive potential for biological evolution. Trehalose is a high-quality carbon source and blood sugar in insects. However, recent theoretical developments suggest that mechanisms for facilitated trehalose transport in lepidopteran insects remain relatively scarce.

View Article and Find Full Text PDF

Many North American game animals experienced severe population declines during the 19th century due to market hunting. However, estimates of the timing and magnitude of these declines often rely on anecdotal evidence, which makes it difficult to understand the lasting impacts of hunting pressures versus climate or landscape changes on the genetic diversity of contemporary populations. Historical reports suggest the California quail (Callipepla californica) suffered more significant hunting pressure in the late 19th century relative to either Gambel's (Callipepla gambelii) or mountain quail (Oreortyx pictus).

View Article and Find Full Text PDF