98%
921
2 minutes
20
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677340 | PMC |
http://dx.doi.org/10.3390/molecules29245934 | DOI Listing |
Mol Syst Biol
September 2025
Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.
The complex interplay between circulating metabolites and immune responses, which is pivotal to disease pathophysiology, remains poorly understood and understudied in systematic research. Here, we performed a comprehensive analysis of the immune response and circulating metabolome in two Western European cohorts (534 and 324 healthy individuals) and one from sub-Saharan Africa (323 healthy donors). At the metabolic level, our analysis revealed sex-specific differences in the correlation between phosphatidylcholine and cytokine responses following ex vivo stimulation.
View Article and Find Full Text PDFMicrob Pathog
September 2025
Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China. Electronic address:
Sepsis is a systemic inflammatory response syndrome triggered by infection. Severe sepsis is associated with dysbiosis of the intestinal flora and impaired intestinal function. Ellagic acid (EA) is a natural compound known for its ability to inhibit bacteria and viruses, thereby preventing infections.
View Article and Find Full Text PDFPhytomedicine
August 2025
College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
Background: The gut-liver axis, pivotal in managing glucose balance and insulin responsiveness, is central to the development of type 2 diabetes mellitus (T2DM). Research has highlighted the regulatory effects of dietary alpha-linolenic acid (ALA), but it remains unclear how ALA modulates gut microbiota and liver inflammation in T2DM.
Purpose: This study aimed to systematically investigate ALA's influence on liver inflammation, intestinal barrier integrity, gut microbial composition, and metabolic homeostasis in T2DM, with a focus on the underlying molecular mechanisms.
Arch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFJ Chem Ecol
September 2025
Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany.
Plant roots are exposed to various organisms that significantly impact plant productivity. Plant-parasitic nematodes (PPNs) such as Meloidogyne spp. and Pratylenchus spp.
View Article and Find Full Text PDF