A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing Amyloid PET Quantification: MRI-Guided Super-Resolution Using Latent Diffusion Models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amyloid PET imaging plays a crucial role in the diagnosis and research of Alzheimer's disease (AD), allowing non-invasive detection of amyloid-β plaques in the brain. However, the low spatial resolution of PET scans limits the accurate quantification of amyloid deposition due to partial volume effects (PVE). In this study, we propose a novel approach to addressing PVE using a latent diffusion model for resolution recovery (LDM-RR) of PET imaging. We leverage a synthetic data generation pipeline to create high-resolution PET digital phantoms for model training. The proposed LDM-RR model incorporates a weighted combination of L, L, and MS-SSIM losses at both noise and image scales to enhance MRI-guided reconstruction. We evaluated the model's performance in improving statistical power for detecting longitudinal changes and enhancing agreement between amyloid PET measurements from different tracers. The results demonstrate that the LDM-RR approach significantly improves PET quantification accuracy, reduces inter-tracer variability, and enhances the detection of subtle changes in amyloid deposition over time. We show that deep learning has the potential to improve PET quantification in AD, effectively contributing to the early detection and monitoring of disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678505PMC
http://dx.doi.org/10.3390/life14121580DOI Listing

Publication Analysis

Top Keywords

amyloid pet
12
pet quantification
12
pet
8
latent diffusion
8
pet imaging
8
amyloid deposition
8
enhancing amyloid
4
quantification
4
quantification mri-guided
4
mri-guided super-resolution
4

Similar Publications