Characterization of metalaxyl-induced notochord toxicity based on biochemical and transcriptomics in zebrafish (Danio rerio) model.

J Hazard Mater

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, To

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metalaxyl is an acylanilide systemic fungicide that is widely applied and can readily enter ecosystems through leaching and soil runoff. This research utilized zebrafish as a model organism to thoroughly investigate the detrimental impacts of environmentally relevant levels of metalaxyl on the development of the notochord in zebrafish embryos and to elucidate the underlying molecular mechanisms through transcriptomics, pharmacological intervention and molecular biological detection. The preliminary results demonstrated that metalaxyl induced significant modifications in the developmental parameters of zebrafish embryos. This study has also assessed the long-term consequences of metalaxyl exposure during the embryonic development of zebrafish. This study have demonstrated that zebrafish exposed to metalaxyl exhibit a range of abnormalities, including defects in notochord vacuole biogenesis, somite segmentation disorders, anomalous notochord curvatures, craniofacial cartilage deformities, and irregular chordacentra mineralisation. Through transcriptomic and bioinformatics analysis, it was found that most of the genes exhibiting differential expression were linked to oxidative stress. Furthermore, the evidence indicated that oxidative stress was present, as demonstrated by increased malondialdehyde (MDA) production and a decrease in antioxidant enzyme activity (CAT, SOD, GSH). Interestingly, the developmental dysfunction induced by metalaxyl was partially rescued by chlorogenic acid. Overall, metalaxyl disrupts notochord and skeletal formation in zebrafish embryos by modulating oxidative stress mediated by reactive oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136985DOI Listing

Publication Analysis

Top Keywords

zebrafish embryos
12
oxidative stress
12
zebrafish
7
metalaxyl
7
notochord
5
characterization metalaxyl-induced
4
metalaxyl-induced notochord
4
notochord toxicity
4
toxicity based
4
based biochemical
4

Similar Publications

Exploring the effect of copper on the bioactivity of 8-quinolines: an and study.

Dalton Trans

September 2025

Biomedical Inorganic Chemistry Lab, Department of Chemical Sciences, University of Catania, v.le A. Doria 6, 95125, Catania, Italy.

Current anticancer therapy is challenged by the adaptability and resistance of tumor cells as well as limited drug selectivity that causes severe side effects. The scientific community maintains high interest in metal-based chemotherapeutic agents due to their unique interactions with cancer cells, potentially overcoming resistance mechanisms and exploiting the physiopathology of the tumour tissues. Copper, in particular, plays a dual role in cancer, both facilitating tumor progression and triggering cuproptosis, a copper-induced cell death mechanism.

View Article and Find Full Text PDF

Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.

View Article and Find Full Text PDF

Neurotoxic Effects of 4-Hydroxy-4'-Isopropoxydiphenylsulfone Exposure on Zebrafish Embryos.

Environ Pollut

September 2025

Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.

The central nervous system (CNS) is particularly vulnerable to endocrine-disrupting chemicals, especially bisphenol analogues. Bisphenol A (BPA), a widely studied compound, has been associated with various neurological disorders, leading to restrictions on its use and the subsequent adoption of alternative chemicals such as 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP). However, concerns regarding the potential neurotoxicity of BPSIP have emerged.

View Article and Find Full Text PDF

Effects of rosmarinic acid on the fibrotic toxicity of amylin in a zebrafish model.

Biochem Biophys Res Commun

September 2025

Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan. Electronic address:

Amylin aggregation and the resulting fibrotic toxicity are associated with the pathogenesis of type 2 diabetes mellitus (T2DM). This study evaluated the protective effects of rosmarinic acid (RA) against amylin-induced toxicity in a zebrafish model. Healthy zebrafish embryos from cell stages 1-8 were microinjected with a mixture of 50 μM amylin and 20 μM thioflavin-T (ThT) to induce amylin aggregation and fluorescently label fibril deposition.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF