Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the synthesis, structural characterization and magnetic properties of Kcoronene, and demonstrate a computational screening workflow designed to accelerate the discovery of metal intercalated polycyclic aromatic hydrocarbon (PAH), a class of materials of interest following reports of superconductivity, but lacking demonstrated and understood characterised material compositions. Coronene is identified as a suitable PAH candidate from a library of PAHs for potassium intercalation by computational screening of their electronic structure and of the void space in their crystal structures, targeting LUMO similarity to C and the availability of suitable sites to accommodate inserted cations. Convex hull calculations with energies from crystal structure prediction based on ion insertion into the identified void space of coronene suggest that the = 3 composition in K coronene is stable at 0 K, reinforcing the suitability of coronone for experimental investigation. Exploration of reaction conditions and compositions revealed that the mild reducing agent KH allows formation of Kcoronene. The structure of Kcoronene solved from synchrotron powder X-ray diffraction features extensive reorientation and associated disorder of coronene molecules compared with the parent pristine host. This is driven by K intercalation and occupation of sites both within and between the coronene stacks that are partially retained from the parent structure. This disruption of the host structure is greater when three cations are inserted per coronene than in reported metal PAH structures where the maximum ratio of cations to PAH is 2. Superconductivity is not observed, contrary to previous reports on K coronene. The expected localised moment response of coronene is suppressed, which may be associated with the combination of extensive disorder and close coronene-coronene contacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697372PMC
http://dx.doi.org/10.1039/d4sc05128aDOI Listing

Publication Analysis

Top Keywords

computational screening
8
coronene
8
void space
8
structure
5
multiple cation
4
cation insertion
4
insertion polyaromatic
4
polyaromatic hydrocarbon
4
hydrocarbon guided
4
guided data
4

Similar Publications

Leveraging GPT-4o for Automated Extraction and Categorization of CAD-RADS Features From Free-Text Coronary CT Angiography Reports: Diagnostic Study.

JMIR Med Inform

September 2025

Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.

Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.

Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.

View Article and Find Full Text PDF

Background: Over the past decade, the proportion of the world's population aged ≥65 years has grown exponentially, presenting significant challenges, such as social isolation and loneliness among this population. Assistive technologies have shown potential in enhancing the quality of life for older adults by improving their physical, cognitive, and communication abilities. Research has shown that smart televisions are user-friendly and commonly used among older adults.

View Article and Find Full Text PDF

Background: Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting neuroendocrine tumors originating from the embryonic neural crest. Approximately 30% of PPGLs are hereditary and are frequently associated with genetic syndromes, including neurofibromatosis type 1 (NF1). Composite PPGLs, which include components of both PPGLs and related tumors such as ganglioneuromas, are extremely rare in NF1 patients.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF