98%
921
2 minutes
20
Aqueous zinc-ion batteries (AZIBs) are promising options for large-scale electrical energy storage because of their safety, affordability, and environmental friendliness. As an indispensable component of AZIBs, a current collector plays a crucial role in supporting electrode materials and collecting the accumulated electrical energy. Recently, some progress has been made in the study of current collectors for AZIBs; however, only few comprehensive reviews on this topic are available. In this review, the systematic summary and discussion of research progress on current collectors for AZIBs is presented. Furthermore, the main challenges and key prospects for the future development of current collectors for AZIBs are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202400217 | DOI Listing |
Adv Mater
September 2025
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.
View Article and Find Full Text PDFSmall
September 2025
Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA.
Understanding the electrochemical extraction and deposition of lithium (Li) from cathode is crucial for advancing anode-free solid-state batteries (AFSSBs). Herein, cryo-transmission electron microscopy (cryo-TEM) and electrochemical studies are employed to investigate how current collector surface properties, current densities, and cathode loadings influence the morphology of fresh electrochemically deposited Li and the electrochemical performance in sulfide-based AFSSBs. Cryo-TEM reveals that Cu current collectors induce irregular, dendritic Li deposits due to their lithiophobic nature and reactivity with LiPSCl (LPSC), while Ni and Au facilitate more uniform, planar-like Li growth.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
Supercapacitors serve as an important complement to batteries in sustainable energy storage and utilization systems, necessitating the efficient preparation of high-performance electrodes for practical applications. Here, we present a scalable one-step strategy for fabricating integrated graphene/polyaniline electrodes directly on current collectors, enabled by the dual functionality of HSO in a rapid 20 min process. Initially, dilute HSO acts as a protonation medium to facilitate the oxidative polymerization of aniline by ammonium persulfate.
View Article and Find Full Text PDFAdv Mater
September 2025
Beijing Graphene Institute, Beijing, 100095, P. R. China.
Potassium metal batteries are considered as promising candidates for next-generation energy storage systems. However, their practical development is hindered by the insufficient capacity output and persistent dendritic proliferation at the anode side. Here graphene-skinned hexagonal boron nitride powder is demonstrated synthesized via fluidized bed-chemical vapor deposition, realizing conformal growth of layer-controlled graphene (5-90 layers) over h-BN with atomically coupled heterointerfaces.
View Article and Find Full Text PDFNat Commun
September 2025
Medical Research Center, Seoul National University, Seoul, Republic of Korea.
Recent advancements in implantable bioelectronic devices have increased the demand for biocompatible energy sources with long-term electrochemical and mechanical stability. Here, we present a tough hydrogel-based supercapacitor (THBS) fiber, fabricated via a thermal drawing process (TDP), that enables the integration of all components-electrodes, electrolyte, current collectors, and encapsulation-into a single, unified, and mechanically robust fiber-shaped architecture. Through thermal/mechanical optimization and the incorporation of self-healing properties, THBS fibers exhibit durable, high electrochemical performance under dynamic, high-curvature deformations mimicking in vivo physiological motions.
View Article and Find Full Text PDF