Ascorbic acid transporter MmSLC23A2 functions to inhibit apoptosis via ROS scavenging in hard clam (Mercenaria mercenaria) under acute hypo-salinity stress.

Int J Biol Macromol

Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingd

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solute carrier family 23 (SLC23) mediates cellular uptake of ascorbic acid, a crucial antioxidant protecting organisms against oxidative stress. Despite advances in understanding SLC23 in mammals, its physiological roles in bivalves remain poorly understood. Notably, euryhaline bivalves exhibit a significant expansion and positive selection of SLC23, highlighting the need for deeper investigation. Here, we identified 25 MmSLC23 in the hard clam genome. These genes predominantly cluster on chromosomes 3 and 14, with tandem duplications driving their expansion. All MmSLC23 localize to the plasma membrane, containing 9-14 transmembrane domains. Syntenic conservation of SLC23 was limited across order Venerida, with most expanded members being lineage-specific paralogs. Transcriptome analysis and fluorescence in situ hybridization revealed that MmSLC23 exhibited divergent expression patterns under acute and chronic salinity stress. Notably, RNA interference of MmSLC23A2 led to a significant reduction in intracellular ascorbic acid levels. Under acute hypo-salinity stress, increased ROS levels and elevated apoptosis rate were observed in MmSLC23A2 knockdown clams, as assessed by flow cytometry and transmission electron microscopy. These findings underscore the crucial role of SLC23 in mitigating oxidative damage and preventing premature apoptosis under acute salinity stress, offering new insights into the molecular mechanisms underlying the remarkable salinity adaptability of euryhaline bivalves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139483DOI Listing

Publication Analysis

Top Keywords

ascorbic acid
12
hard clam
8
acute hypo-salinity
8
hypo-salinity stress
8
euryhaline bivalves
8
salinity stress
8
stress
5
slc23
5
acid transporter
4
transporter mmslc23a2
4

Similar Publications

Objective: Vitamin C has been linked to alterations in platelet count and aggregation behavior. Given recent findings suggesting an association between vitamin C and adverse outcomes in patients with septic shock, we aimed to investigate whether vitamin C influences mortality in septic patients through its impact on platelets.

Design: Post hoc analysis of the Lessening Organ Dysfunction With Vitamin C (LOVIT) randomized trial (clinicaltrials.

View Article and Find Full Text PDF

Rationale: This case highlights the importance of considering a wide range of possible diagnoses when faced with unexplained hemorrhagic symptoms. When standard investigations fail to identify a clear cause, it is essential to conduct a detailed dietary history. This can lead to the diagnosis of scurvy, a reversible vitamin C deficiency that is often overlooked in populations at risk.

View Article and Find Full Text PDF

Although platelet-rich plasma (PRP) has demonstrated considerable regenerative potential in regenerative endodontic treatment, its clinical efficacy may be limited by the rapid degradation of its bioactive components, leading to inconsistent outcomes. To overcome this challenge, the present study explores the use of nano-sized exosomes derived from PRP-a novel designated as PRP exosomes (PRP-Exo)-as a more stable and targeted biomolecular delivery system to promote odontogenic differentiation within the dentin-pulp complex. The primary objective is to investigate the expression of key odontogenic markers, transforming growth factor-β1 (TGF-β1) and Dentin Sialophosphoprotein (DSPP), in human dental pulp stem cells (hDPSCs) following PRP-Exo treatment.

View Article and Find Full Text PDF

Preparation and Characterization of Polysaccharides From Grifola frondosa and Their Human Intestinal Flora-modulating Effect.

Chem Biodivers

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.

A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.

View Article and Find Full Text PDF

As potent therapeutic agents, the pharmacological potentials of natural substances have been the subject of recent research. Around the world, numerous tribes and ethnic communities have long used Linn. (Family: ) to treat variety of illnesses.

View Article and Find Full Text PDF