Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease.

Annu Rev Immunol

Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden; email:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cell secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine. The respiratory tract mucus system clears particles and microorganisms from healthy lungs but causes disease if reorganized to an attached mucus that cannot be efficiently transported. Similarly, transformation of large intestine mucus from impenetrable to penetrable causes chronic inflammation directed toward the intestinal microbiota. Mucus-producing goblet cells are regulated by and responsive to signals from immune cells, and at the same time signal back to the immune system. In this review we focus on the relationship of immune cells with intestinal goblet cells and mucus, making parallels to the respiratory tract.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-immunol-101721-065224DOI Listing

Publication Analysis

Top Keywords

mucus
9
goblet cell
8
cells mucus
8
mucus system
8
attached mucus
8
mucus impenetrable
8
large intestine
8
respiratory tract
8
goblet cells
8
immune cells
8

Similar Publications

Intestinal mucosa-mimetic double-layer gelatin hydrogel for recapitulation of 3D immune microenvironment.

Int J Biol Macromol

September 2025

Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

The intestinal immune microenvironment plays a crucial role in regulating systemic immune responses and is implicated in various diseases. Nevertheless, no existing model simultaneously replicates the three-dimensional (3D) immune microenvironment and the mucosal barrier. This study presents a novel mucosa-mimic model that consists of a cell-laden hydrogel matrix and a pseudo-mucus layer that emulate the intestinal lamina propria and mucosal barrier, respectively.

View Article and Find Full Text PDF

Developing Type II F508del-CFTR correctors with a protective effect against respiratory viruses.

Eur J Med Chem

August 2025

Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy. Electronic address:

Cystic fibrosis (CF) is a multifaceted disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resulting thick mucus accumulation increases the risk of microbial infections, leading to chronic lung inflammation, progressive tissue damage, and pulmonary exacerbations (PEs). Respiratory viruses may facilitate bacterial colonization, significantly contributing to PEs.

View Article and Find Full Text PDF

The Mediterranean Sea is home to a wide variety of fish species that exhibit carnivorous behavior, particularly during the juvenile to pre-adult stages. This study aimed to compare the tongue morphology of four Mediterranean carnivorous fish species: the dusky grouper fish (Epinephelus marginatus), John Dory fish (Zeus faber), squirrelfish (Holocentrus spp.), and red lionfish (Pterois volitans).

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

Utilizing biomaterials for laryngeal respiratory mucosal tissue repair in an animal model.

Biomater Biosyst

September 2025

ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.

View Article and Find Full Text PDF