A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of GaN substrates of different polarity on the thermal and electronic properties of monolayer MoS. | LitMetric

Effects of GaN substrates of different polarity on the thermal and electronic properties of monolayer MoS.

Phys Chem Chem Phys

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monolayer MoS, a compound in two-dimensional TMDs, exhibits excellent physical and chemical properties due to its sandwich structure, making it widely used in the design of nanodevices. We investigated the impact of GaN substrates on the thermal and electronic properties of monolayer MoS. The results reveal that the polarity of the GaN substrate significantly affects the thermal conductivity of monolayer MoS. The surface layer of the GaN substrate can be a Ga layer or an N layer, and in this paper, we investigated the effect of the surface layer type of the GaN substrate on the thermal conductivity of GaN supported monolayer MoS, and denoted the GaN substrate with a Ga surface layer as Ga-GaN and the GaN substrate with an N surface layer as N-GaN. This reduction is primarily attributed to the enhanced Mo-S antibonding with the Ga-GaN substrate, leading to increased phonon anharmonicity. Notably, while the Ga-GaN substrate has a minimal effect on the electronic properties of MoS, its impact on reducing thermal conductivity is more pronounced, thereby substantially enhancing the thermoelectric performance of the overlying material. This study provides valuable insights for the application of monolayer MoS in thermal management.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03803gDOI Listing

Publication Analysis

Top Keywords

monolayer mos
24
gan substrate
20
surface layer
16
electronic properties
12
thermal conductivity
12
gan substrates
8
thermal electronic
8
properties monolayer
8
substrate thermal
8
substrate surface
8

Similar Publications