98%
921
2 minutes
20
Nanopores are promising sensors for glycan analysis with the accurate identification of complex glycans laying the foundation for nanopore-based sequencing. However, their applicability toward continuous glycan sequencing has not yet been demonstrated. Here, we present a proof-of-concept of glycan sequencing by combining nanopore technology with glycosidase-hydrolyzing reactions. By continuously monitoring the changes in the characteristic current generated by the translocation of glycan hydrolysis products through a nanopore, the glycan sequence can be accurately identified based on the specificity of glycosidases. With machine learning, we improved the sequencing accuracy to over 98%, allowing for the reliable determination of consecutive building blocks and glycosidic linkages of glycan chains while reducing the need for operator expertise. This approach was validated on real glycan samples, with accuracy calibrated using hydrophilic interaction chromatography-high-performance liquid chromatography (HILIC-HPLC) and mass spectrometry (MS). We achieved the sequencing of ten consecutive units in natural glycan chains, which provided the first evidence for the feasibility of a nanopore-glycosidase-compatible system in glycan sequencing. Compared to traditional methods, this strategy enhances sequencing efficiency by over 5-fold. Additionally, we introduced the concept of 'inverse sequencing', which focuses on electrical signal changes rather than monosaccharide identification. This eliminates the reliance on glycan fingerprint libraries typically required in putative 'forward hydrolysis' strategies. When the challenges in both 'forward and inverse hydrolysis sequencing strategies' are addressed, this approach will pave the way for establishing a glycan sequencing technology at a single-molecule level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c12940 | DOI Listing |
Front Immunol
September 2025
Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, Stockholm, Sweden.
Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.
Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.
Carbohydr Res
September 2025
Laboratory for Biochemistry & Glycobiology, Ghent University, Department of Biotechnology, Ghent, Belgium. Electronic address:
Lectins are carbohydrate-binding proteins which play key roles in various biological processes, including cell signaling, pathogen recognition and development. Previous research conducted on ricin-B lectin domains and carbohydrate-binding modules of family 13 (CBM13) illustrated the striking resemblances between these two groups of protein domains. In this study, we report on the discovery, identification and putative biochemical characteristics of a ricin-B-like domain that is unique for GH27 enzymes from land plants, identified in the OsAPSE enzyme from Japanese rice (Oryza sativa L.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPLoS One
September 2025
School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.
The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDF