Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA). This novel ligand forms pseudocyclic molecular complexes with lanthanide ions at organic/aqueous interfaces, revealed by vibrational sum frequency generation spectroscopy. These complexes are extracted into the organic phase, where femtosecond structural dynamics are probed by two-dimensional infrared spectroscopy and ab initio molecular dynamics simulations to mechanistically frame the macroscopic selectivity trends. We find larger-than-expected structural fluctuations and bond lengths for heavy Ln-ODA complexes that arise from an inability of ODA to contort around the smaller ions to satisfy all would-be bonding interactions, despite forming some individually strong bonds. This finding contrasts with the binding of ODA with lighter lanthanides where, despite individually weaker bonds, collective interactions manifest that minimize structural fluctuations and give rise to enhanced thermodynamic stability. These results point to a new paradigm where conformational dynamics and cumulative bonding interactions can be used to facilitate unconventional chemical transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c15074DOI Listing

Publication Analysis

Top Keywords

structural fluctuations
8
bonding interactions
8
conformationally adaptable
4
adaptable extractant
4
extractant flexes
4
flexes strong
4
strong lanthanide
4
lanthanide reverse-size
4
selectivity
4
reverse-size selectivity
4

Similar Publications

CdTeOX (X = Cl, Br, I): a new oxyhalide family with [CdOX] mixed anionic units and adjustable optical properties.

Dalton Trans

September 2025

Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.

Three novel tellurate halides CdTeOX (X = Cl, Br, I) were rationally designed by introducing planar [TeO] into the binary anionic compounds, and synthesized by the flux method in sealed systems. The compounds crystallize in the centrosymmetric 2/ space group and show a layered 3D structure built by pyramid-shaped [CdOX] (X = Cl, Br, I), octahedral [CdO], and triangular [TeO] units. The compounds belong to a new emerging oxyhalide family, AII5BIV4OII12XI2, and the pseudo-ternary phase diagram of the CdO-TeO-CdX system is provided.

View Article and Find Full Text PDF

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.

View Article and Find Full Text PDF

Wearable bioelectronics have advanced dramatically over the past decade, yet remain constrained by their superficial placement on the skin, which renders them vulnerable to environmental fluctuations and mechanical instability. Existing microneedle (MN) electrodes offer minimally invasive access to dermal tissue, but their rigid, bulky design-often 100 times larger and 10,000 times stiffer than dermal fibroblasts-induces pain, tissue damage, and chronic inflammation, limiting their long-term applicability. Here, a cell-stress-free percutaneous bioelectrode is presented, comprising an ultrathin (<2 µm), soft MN (sMN) that dynamically softens via an effervescent structural transformation after insertion.

View Article and Find Full Text PDF

Purpose: Total knee arthroplasty (TKA) is associated with acute postoperative effects that increase the risk of falls. These effects differ between the medial parapatellar (PP) and mid-vastus (MV) surgical techniques but have not been evaluated in terms of postural sway complexity. Loss of this complexity leads to increased randomness in the center of pressure and higher fall risk.

View Article and Find Full Text PDF