Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI. and H/F MRI was performed on a Bruker 9.4 T AVANCE III wide-bore nuclear magnetic resonance spectrometer. Photoaffinity labeling (diazirine photolinker) and mass spectrometry were used to identify the peptide-binding protein. Molecular modeling studies used ColabFold and AlphaFold 3. EP9-decorated liposomes containing modified mRNA for luciferase (mRNA-LUC) were used for the study of the cellular uptake process. After injection of EP9-PFC-NE, the in-vivo F signal localized to the infarcted area of the heart and was EP9-specific, as verified by the use of a mutated peptide. The plasma half-life of the nanoemulsion was 20 h and electron microscopy identified cardiac fibroblasts and epicardial stromal cells to be the main populations for cellular uptake. Photoaffinity labeling identified the tetraspanin CD63 as the main EP9-binding protein, which was supported by CD63-EP9 modeling data. Expression of CD63 was significantly upregulated in infarct-activated fibroblasts of mice and humans. Cellular uptake may involve caveolae and/or clathrin-coated pits as suggested by scRNAseq data. Uptake studies with mRNA-LUC-loaded EP9-PFC-NE confirmed internalization after binding to fibroblast CD63. CD63 was identified to contain a specific EP9 binding motive that triggers endocytosis of EP9-PFC-NE in activated cardiac fibroblasts. This targeted nanoemulsion can therefore be used for imaging and has the potential for fibroblast-specific drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667234PMC
http://dx.doi.org/10.7150/thno.96990DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
20
activated cardiac
12
cellular uptake
12
drug delivery
8
photoaffinity labeling
8
cardiac
6
fibroblasts
6
cd63
5
cd63 novel
4
novel target
4

Similar Publications

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage.

View Article and Find Full Text PDF

Primary coenzyme Q (CoQ) deficiency is a mitochondrial disorder with variable clinical presentation and limited response to standard CoQ10 supplementation. Recent studies suggest that 4-hydroxybenzoic acid (4-HBA), a biosynthetic precursor of CoQ, may serve as a substrate enhancement treatment in cases caused by pathogenic variants in COQ2, a gene encoding a key enzyme in CoQ biosynthesis. However, it remains unclear whether 4-HBA is required throughout life to maintain health, whether it offers advantages over CoQ10 treatment, and whether these findings are translatable to humans.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.

Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.

View Article and Find Full Text PDF