Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Nat Commun

Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time. In this study, through spin dynamic and vibrational spectroscopic characterizations of two radical-embedded framework materials, we show that hydrogen-bonded networks give rise to a low Debye temperature of acoustic phonons and generates sub-terahertz optical phonons, both of which facilitate spin-lattice relaxation. Whereas deuterating hydrogen-bonded networks reduces both phonon frequencies and T, eliminating such flexible structural motifs raises phonon dispersions and improves the T by one to two orders of magnitude. The phononic tunability of spin-lattice relaxation in molecular qubit frameworks would facilitate the development of solid-state qubits operating at elevated temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685587PMC
http://dx.doi.org/10.1038/s41467-024-54989-2DOI Listing

Publication Analysis

Top Keywords

spin-lattice relaxation
16
relaxation molecular
8
molecular qubit
8
qubit frameworks
8
framework materials
8
hydrogen-bonded networks
8
phononic modulation
4
spin-lattice
4
modulation spin-lattice
4
relaxation
4

Similar Publications

Adjusting interlayer interactions and proton-conduction pathways of 2D covalent organic frameworks through the rotaxane structures.

Natl Sci Rev

September 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

Covalent organic frameworks (COFs) have great potential as versatile platforms for proton conduction. However, the commonly applied 2D COFs that are easy to design and synthesize have only 1D channels for proton conduction, limiting the formation of continuous hydrogen bonds due to the anisotropy between their crystalline grains. Herein, we report a strategy to construct 3D channels in 2D COFs by using rotaxane structures and eliminate the strong interlayer π-π interactions, facilitating the formation of smooth 3D proton-transfer pathways during guest doping.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

Elastomer blends, among which natural rubber (NR) and butadiene rubber (BR), are involved in many components of the automotive/tire industry. A comprehensive understanding of their mechanical behavior requires, among other features, a detailed description of the cross-link density in these mixtures. In the case of vulcanized immiscible blends, the distribution of the cross-link density within each of the NR- and BR-rich domains is key information, but difficult to determine using the conventional approaches used for one-component cross-linked elastomers.

View Article and Find Full Text PDF

Superconducting properties of thin film NbTiN studied via the NMR of implantedLi.

J Phys Condens Matter

September 2025

Physics and Astronomy, UVic, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, CANADA.

We report measurements of the normal-state and superconducting properties of thin-film NbTiN usingLi-detected nuclear magnetic resonance (-NMR). In these experiments, radioactiveLiprobes were implanted 21 nm below the surface of a NbTiN(91 nm) film in NbTiN/(91 nm)/AlN(4 nm)/Nb and its NMR response recorded (viaLi's-emissions) between 4.6 K and and 270 K in a 4.

View Article and Find Full Text PDF

Encapsulation Enhances the Quantum Coherence of a Solid-State Molecular Spin Qubit.

Angew Chem Int Ed Engl

September 2025

Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain.

Spins within molecules benefit from the atomistic control of synthetic chemistry for the realization of qubits. One advantage is that the quantum superpositions of the spin states encoding the qubit can be coherently manipulated using electromagnetic radiation. The main challenge is the fragility of these superpositions when qubits are to partake of solid-state devices.

View Article and Find Full Text PDF