A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Encapsulation Enhances the Quantum Coherence of a Solid-State Molecular Spin Qubit. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spins within molecules benefit from the atomistic control of synthetic chemistry for the realization of qubits. One advantage is that the quantum superpositions of the spin states encoding the qubit can be coherently manipulated using electromagnetic radiation. The main challenge is the fragility of these superpositions when qubits are to partake of solid-state devices. We address this issue with a supramolecular approach for protecting molecular spin qubits against decoherence. The molecular qubit [Cr(ox)] has been encapsulated inside the diamagnetic triple-stranded helicate [ZnL] (L is a bis-pyrazolylpyridine ligand). The quantum coherence of the protected qubit is then analyzed with pulsed EPR spectroscopy and compared with the unprotected qubit, both in solution and in the solid state. Crucially, the spin-spin relaxation in the solid state has been examined within diamagnetic crystal lattices of the isostructural ([Al(ox)]@[ZnL]) or [Al(ox)] assemblies, respectively, doped with the Cr qubit in two different (<10%) concentrations. The study unveils a surprising increase of the phase memory time of the qubit upon encapsulation only in the solid. Spin-lattice relaxation times also exhibit a significant enhancement, as established from inversion recovery pulse sequences and from slow relaxation of the magnetization of the protected qubit, not featured by the free qubit.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202510603DOI Listing

Publication Analysis

Top Keywords

quantum coherence
8
molecular spin
8
solid state
8
qubit
6
encapsulation enhances
4
enhances quantum
4
coherence solid-state
4
solid-state molecular
4
spin qubit
4
qubit spins
4

Similar Publications