Slow-release boron fertilizer improves yield and nutritional profile of L. grown in Northeast China by increasing boron supply capacity.

Front Plant Sci

National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The northeastern part of China is a traditional sugar beet cultivation area where the soils are classified generally as the black and albic soil types with low boron (B) availability. Boron fertilizer can increase soil B content and significantly improve crop yield and quality. At present, the effects of slow-release B fertilizer on beet root yield and quality remain unclear. Two sugar beet varieties KWS1197 and KWS0143 were selected as the research materials; and biologically evaluated with three dosage rates of 0, 15, and 30 kg ha in two soil types. Results showed that slow-release B fertilizer (30 kg ha) improved sugar beet net photosynthetic rate (13.6%) and transpiration rate (9.8%), as well as enhanced dry matter accumulation and the transfer to underground parts (23.1%) for higher root yield (1.4 to 9.7% in black soil and 3.5-14.2% in albic soil). Specifically, boron fertilizer greatly increased root B accumulation, as evidenced by decreasing amino N and Na contents alongside increasing surose (Pol) content. Slow-release B fertilizer increased white sugar yield by 3.5 to 35.7% in black soil and 5.8 to 20.8% in albic soil. In conclusion, applying slow-release B fertilizer is an effective strategy to increase sugar beet yield and quality in northeast China, with a recommended application rate of 30 kg ha. These findings established a baseline for formulating effective and futristic fertilizer for sugar beet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683845PMC
http://dx.doi.org/10.3389/fpls.2024.1441226DOI Listing

Publication Analysis

Top Keywords

sugar beet
20
slow-release fertilizer
16
boron fertilizer
12
albic soil
12
yield quality
12
fertilizer
8
northeast china
8
soil types
8
root yield
8
black soil
8

Similar Publications

Constipation is a common gastrointestinal disorder characterized by infrequent and difficult bowel movements, hard stool consistency, and delayed intestinal transit. The present study evaluated the phytochemical profile and physiological effects of the aqueous extract of beetroot leaves (AEBL) in a rat model of Loperamide (LOP)-induced constipation. Thirty-six male Wistar rats were randomly assigned to six groups (n = 6): two controls (normal and constipated) and four constipated groups receiving either increasing doses of AEBL (100, 200, or 400 mg/kg, b.

View Article and Find Full Text PDF

Sensitivity assessment of 300 Cercospora beticola isolates collected from North Greece revealed that 38 % of the population was highly resistant to at least one of the demethylase inhibitors (DMIs) difenoconazole, epoxiconazole and flutriafol. Resistance factors greater than 50, 100 and 100 were calculated for the most resistant C. beticola isolates to flutriafol, epoxiconazole and difenoconazole, respectively.

View Article and Find Full Text PDF

A novel smart textile swab was developed as an analytical tool for the onsite evaluation of biochemical changes in sweat toward potential applications in healthcare monitoring and drug testing. Betalain (BTA) was extracted from beetroot (Beta vulgaris L.) using a simple procedure.

View Article and Find Full Text PDF

The quantification of sucrose and other carbohydrates in sugar beet roots is essential prior to their processing to assess sugar production yield. In this study, a rapid, highly sensitive and selective ultra-fast liquid chromatography coupled with time of flight mass spectrometry (UFLC-ToFMS) method was developed and validated for the simultaneous analysis of monosaccharides (fructose, glucose-galactose), a disaccharide (sucrose), and a trisaccharide (raffinose). The method showed 1000-fold higher sensitivity, with LOD and LOQ ranging between 0.

View Article and Find Full Text PDF