Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Angiogenesis is imperative for bone regeneration, yet the conventional cytokine therapies have been constrained by prohibitive costs and safety apprehensions. It is urgent to develop a safer and more efficient therapeutic alternative. Herein, utilizing the methodologies of Deep Learning (DL) and Natural Language Processing (NLP), we proposed a paradigm algorithm that amalgamates with a variant, , to deftly discern potential pro-angiogenic peptides from intrinsically disordered regions (IDRs) of 262 related proteins, where are fertile grounds for developing safer and highly promising bioactive peptides. After the evaluation of the candidate oligopeptides, one tripeptide, PSP, emerged as particularly notable for its exceptional ability to stimulate the vascularization of endothelial cells (ECs), enhance vascular-osteo communication, and then boost the osteogenic differentiation of bone marrow stem cells (BMSCs), evidenced in mouse critical-sized cranial model. Moreover, we found that PSP serves as a 'priming' agent, activating the body's innate ability to produce Osteolectin (Oln) prompting ECs to release small extracellular vesicles (sEVs) enriched with Oln to facilitate bone formation. In summary, our study established a precise and efficient composite model of DL and NLP to screen bioactive peptides, opening an avenue for the development of various peptide-based therapeutic strategies applicable to a broader range of diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681832PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.11.011DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning natural
8
natural language
8
tripeptide psp
8
bone regeneration
8
bioactive peptides
8
throw oligopeptide
4
oligopeptide catch
4
catch protein
4
protein deep
4

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

SPACE: STRING proteins as complementary embeddings.

Bioinformatics

September 2025

Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.

Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.

Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.

View Article and Find Full Text PDF

Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.

View Article and Find Full Text PDF